Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network

被引:0
|
作者
Asmaa Abbas
Mohammed M. Abdelsamea
Mohamed Medhat Gaber
机构
[1] Faculty of Science,Mathematics Department
[2] Assiut University,School of Computing and Digital Technology
[3] Birmingham City University,undefined
来源
Applied Intelligence | 2021年 / 51卷
关键词
DeTraC; Covolutional neural networks; COVID-19 detection; Chest X-ray images; Data irregularities;
D O I
暂无
中图分类号
学科分类号
摘要
Chest X-ray is the first imaging technique that plays an important role in the diagnosis of COVID-19 disease. Due to the high availability of large-scale annotated image datasets, great success has been achieved using convolutional neural networks (CNN s) for image recognition and classification. However, due to the limited availability of annotated medical images, the classification of medical images remains the biggest challenge in medical diagnosis. Thanks to transfer learning, an effective mechanism that can provide a promising solution by transferring knowledge from generic object recognition tasks to domain-specific tasks. In this paper, we validate and a deep CNN, called Decompose, Transfer, and Compose (DeTraC), for the classification of COVID-19 chest X-ray images. DeTraC can deal with any irregularities in the image dataset by investigating its class boundaries using a class decomposition mechanism. The experimental results showed the capability of DeTraC in the detection of COVID-19 cases from a comprehensive image dataset collected from several hospitals around the world. High accuracy of 93.1% (with a sensitivity of 100%) was achieved by DeTraC in the detection of COVID-19 X-ray images from normal, and severe acute respiratory syndrome cases.
引用
收藏
页码:854 / 864
页数:10
相关论文
共 50 条
  • [31] CheXImageNet: a novel architecture for accurate classification of Covid-19 with chest x-ray digital images using deep convolutional neural networks
    Shastri, Sourabh
    Kansal, Isha
    Kumar, Sachin
    Singh, Kuljeet
    Popli, Renu
    Mansotra, Vibhakar
    HEALTH AND TECHNOLOGY, 2022, 12 (01) : 193 - 204
  • [32] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [33] CheXImageNet: a novel architecture for accurate classification of Covid-19 with chest x-ray digital images using deep convolutional neural networks
    Sourabh Shastri
    Isha Kansal
    Sachin Kumar
    Kuljeet Singh
    Renu Popli
    Vibhakar Mansotra
    Health and Technology, 2022, 12 : 193 - 204
  • [34] A Robust Hybrid Deep Convolutional Neural Network for COVID-19 Disease Identification from Chest X-ray Images
    Sanida, Theodora
    Tabakis, Irene-Maria
    Sanida, Maria Vasiliki
    Sideris, Argyrios
    Dasygenis, Minas
    INFORMATION, 2023, 14 (06)
  • [35] ConvCoroNet: a deep convolutional neural network optimized with iterative thresholding algorithm for Covid-19 detection using chest X-ray images
    Merrouchi, M.
    Benyoussef, Y.
    Skittou, M.
    Atifi, K.
    Gadi, T.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024, 42 (11): : 5699 - 5712
  • [36] Detection of COVID-19 from Chest X-Ray Images Using Convolutional Neural Networks
    Sekeroglu, Boran
    Ozsahin, Ilker
    SLAS TECHNOLOGY, 2020, 25 (06): : 553 - 565
  • [37] COVID-19 Lungs Assessment in Chest X-ray Images using Convolutional Neural Networks
    Milczarski, Piotr
    Beczkowski, Michal
    Borowski, Norbert
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 1062 - 1067
  • [38] Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification
    Gour, Mahesh
    Jain, Sweta
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [39] Deep Residual Neural Network for COVID-19 Detection from Chest X-ray Images
    Amirhossein Panahi
    Reza Askari Moghadam
    Mohammadreza Akrami
    Kurosh Madani
    SN Computer Science, 2022, 3 (2)
  • [40] COVINet: a convolutional neural network approach for predicting COVID-19 from chest X-ray images
    Umer, Muhammad
    Ashraf, Imran
    Ullah, Saleem
    Mehmood, Arif
    Choi, Gyu Sang
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (01) : 535 - 547