Symmetric, Hankel-Symmetric, and Centrosymmetric Doubly Stochastic Matrices

被引:10
作者
Brualdi R.A. [1 ]
Cao L. [2 ]
机构
[1] Department of Mathematics, University of Wisconsin, Madison, 53706, WI
[2] Department of Mathematics, Georgian Court University, Lakewood, 08701, NJ
基金
英国科研创新办公室;
关键词
Centrosymmetric; Doubly stochastic; Extreme point; Hankel-symmetric; Matrix; Permutation matrix; Symmetric;
D O I
10.1007/s40306-018-0266-z
中图分类号
学科分类号
摘要
We investigate convex polytopes of doubly stochastic matrices having special structures: symmetric, Hankel-symmetric, centrosymmetric, and both symmetric and Hankel-symmetric. We determine dimensions of these polytopes and classify their extreme points. We also determine a basis of the real vector spaces generated by permutation matrices with these special structures. © 2018, Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd.
引用
收藏
页码:675 / 700
页数:25
相关论文
共 7 条
[1]  
Barnabei M., Bonetti F., Silimbani M., The Eulerian distribution on centrosymmetric involutions, Discret. Math. Theor. Comput Sci., 11, 1, pp. 95-115, (2009)
[2]  
Brualdi R.A., Combinatorial Matrix Classes, (2006)
[3]  
Brualdi R.A., Fritscher E., Loopy, Hankel, and combinatorially skew-Hankel tournaments, Discret. Appl. Math., 194, pp. 37-59, (2015)
[4]  
Brualdi R.A., Ma S.-M., Centrosymmetric, and symmetric and Hankel-symmetric matrices. Mathematics across contemporary science, Springer Proc. Math. Stat., 190, pp. 17-31, (2017)
[5]  
Brualdi R.A., Meyer S.A., Combinatorial properties of integer matrices and integer matrices mod k. Linear Multilinear Algebra
[6]  
Cho S., Nam Y., Convex polytopes of generalized doubly stochastic matrices, Commun. Korean Math. Soc., 16, 4, pp. 679-690, (2001)
[7]  
Cruse A.B., Some combinatorial properties of centrosymmetric matrices, Linear Algebra Appl., 16, 1, pp. 65-77, (1977)