Magnetic effects at the interface between non-magnetic oxides

被引:0
|
作者
A. Brinkman
M. Huijben
M. van Zalk
J. Huijben
U. Zeitler
J. C. Maan
W. G. van der Wiel
G. Rijnders
D. H. A. Blank
H. Hilgenkamp
机构
[1] Faculty of Science and Technology and MESA+ Institute for Nanotechnology,
[2] University of Twente,undefined
[3] High Field Magnet Laboratory,undefined
[4] Institute for Molecules and Materials,undefined
[5] Radboud University Nijmegen,undefined
[6] Strategic Research Orientation NanoElectronics,undefined
[7] MESA+ Institute for Nanotechnology,undefined
[8] University of Twente,undefined
[9] Present address: Physics Department,undefined
[10] University of California,undefined
[11] Berkeley,undefined
[12] California 94720,undefined
[13] USA,undefined
来源
Nature Materials | 2007年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface1,2. Here we show how, in analogy to this remarkable interface-induced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman–Kittel–Kasuya–Yosida interactions3, the Kondo effect4 and carrier-induced ferromagnetism in diluted magnetic semiconductors5. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.
引用
收藏
页码:493 / 496
页数:3
相关论文
共 50 条
  • [41] Non-magnetic spin polarization
    不详
    NATURE PHYSICS, 2006, 2 (07) : 433 - 433
  • [42] TRACE-ELEMENT DISTRIBUTION BETWEEN MAGNETIC AND NON-MAGNETIC PORTIONS OF ORDINARY CHONDRITES
    RAMBALDI, ER
    CENDALES, M
    THACKER, R
    EARTH AND PLANETARY SCIENCE LETTERS, 1978, 40 (02) : 175 - 186
  • [43] Features of Magnetic Susceptibility of a Ferrofluid with a Non-Magnetic Filler
    Dikansky, Yu. I.
    Gladkikh, D.V.
    Dorozhko, D.S.
    Kurnev, A.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (10) : 1513 - 1517
  • [44] MATERIALS CHEMISTRY A magnetic facelift for non-magnetic metals
    Raman, Karthik V.
    Moodera, Jagadeesh S.
    NATURE, 2015, 524 (7563) : 42 - 43
  • [45] Magnetism in clusters of non-magnetic elements: Pd, Rh, and RuMagnetism in clusters of non-magnetic elements
    V. Kumar
    Y. Kawazoe
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2003, 24 : 81 - 84
  • [46] Optical properties of magnetic and non-magnetic composites of ferrofluids
    Patel, Rajesh
    Upadhyay, R. V.
    Mehta, R. V.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (01) : E217 - E220
  • [47] Sedimentation of two non-magnetic particles in magnetic fluid
    Chen Mu-Feng
    Li Xiang
    Niu Xiao-Dong
    Li You
    Adnan
    Yamaguchi, Hiroshi
    ACTA PHYSICA SINICA, 2017, 66 (16)
  • [48] The composite Hall effect of non-magnetic and magnetic bilayers
    Koon, DW
    Azofeifa, DE
    Clark, N
    THIN SOLID FILMS, 2002, 405 (1-2) : 98 - 103
  • [49] Revealing the degree of magnetic frustration by non-magnetic impurities
    Chen, C-C
    Applegate, R.
    Moritz, B.
    Devereaux, T. P.
    Singh, R. R. P.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [50] Magnetic and non-magnetic phases of a quantum spin liquid
    F. L. Pratt
    P. J. Baker
    S. J. Blundell
    T. Lancaster
    S. Ohira-Kawamura
    C. Baines
    Y. Shimizu
    K. Kanoda
    I. Watanabe
    G. Saito
    Nature, 2011, 471 : 612 - 616