Magnetic effects at the interface between non-magnetic oxides

被引:0
|
作者
A. Brinkman
M. Huijben
M. van Zalk
J. Huijben
U. Zeitler
J. C. Maan
W. G. van der Wiel
G. Rijnders
D. H. A. Blank
H. Hilgenkamp
机构
[1] Faculty of Science and Technology and MESA+ Institute for Nanotechnology,
[2] University of Twente,undefined
[3] High Field Magnet Laboratory,undefined
[4] Institute for Molecules and Materials,undefined
[5] Radboud University Nijmegen,undefined
[6] Strategic Research Orientation NanoElectronics,undefined
[7] MESA+ Institute for Nanotechnology,undefined
[8] University of Twente,undefined
[9] Present address: Physics Department,undefined
[10] University of California,undefined
[11] Berkeley,undefined
[12] California 94720,undefined
[13] USA,undefined
来源
Nature Materials | 2007年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface1,2. Here we show how, in analogy to this remarkable interface-induced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman–Kittel–Kasuya–Yosida interactions3, the Kondo effect4 and carrier-induced ferromagnetism in diluted magnetic semiconductors5. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.
引用
收藏
页码:493 / 496
页数:3
相关论文
共 50 条
  • [31] Effects of non-magnetic doping upon orbital and magnetic structures of lanthanum manganite
    Gonchar, Liudmila E.
    Firsin, Anton A.
    Nikiforov, Anatoliy E.
    Popov, Sergey E.
    MAGNETISM AND MAGNETIC MATERIALS V, 2012, 190 : 671 - 674
  • [32] Effects of magnetic and non-magnetic doping on the vortex lattice in MgB21
    Louden, Elizabeth R.
    Manni, Soham
    Van Zandt, Judah E.
    Leishman, Allan W. D.
    Taufour, Valentin
    Bud'ko, Sergey L.
    DeBeer-Schmitt, Lisa
    Honecker, Dirk
    Dewhurst, Charles D.
    Canfield, Paul C.
    Eskildsen, Morten R.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2022, 55 : 693 - 701
  • [33] Ab initio based interface characterization of non-magnetic FCC metals
    Lotfian, K.
    Tehranchi, A.
    Shodja, H. M.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 235
  • [34] INFLUENCE OF NON-MAGNETIC LOCALIZED STATES AT AN INTERFACE ON SUPERCONDUCTING PROXIMITY EFFECT
    MORI, N
    OZAKI, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (06) : 1774 - 1781
  • [35] Non-magnetic films of nickel
    Ingersoll, LR
    De Vinney, SS
    PHYSICAL REVIEW, 1925, 26 (01): : 0086 - 0091
  • [36] Non-magnetic fluid grinding
    Chang, FY
    Childs, THC
    WEAR, 1998, 223 (1-2) : 7 - 12
  • [37] Non-magnetic fluid grinding
    School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom
    Wear, 1-2 (7-12):
  • [38] AN ELECTROMAGNET FOR NON-MAGNETIC SUBSTANCES
    LOVELL, WV
    PHYSICAL REVIEW, 1946, 69 (5-6): : 251 - 251
  • [39] Non-magnetic spring steel
    不详
    MATERIALS WORLD, 1997, 5 (02) : 76 - 76
  • [40] Non-magnetic films of nickel
    Darrow, KK
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA AND REVIEW OF SCIENTIFIC INSTRUMENTS, 1926, 12 (01): : 14 - 14