Suppression of Plasma Echoes and Landau Damping in Sobolev Spaces by Weak Collisions in a Vlasov-Fokker-Planck Equation

被引:0
|
作者
Bedrossian J. [1 ]
机构
[1] University of Maryland, College Park, College Park, MD
基金
美国国家科学基金会;
关键词
Landau damping; Long-time dynamics; Singular limits; Vlasov-Fokker-Planck; Weak collisions;
D O I
10.1007/s40818-017-0036-6
中图分类号
学科分类号
摘要
In this paper, we study Landau damping in the weakly collisional limit of a Vlasov-Fokker-Planck equation with nonlinear collisions in the phase-space (x,v)∈Txn×Rvn. The goal is four-fold: (A) to understand how collisions suppress plasma echoes and enable Landau damping in agreement with linearized theory in Sobolev spaces, (B) to understand how phase mixing accelerates collisional relaxation, (C) to understand better how the plasma returns to global equilibrium during Landau damping, and (D) to rule out that collision-driven nonlinear instabilities dominate. We give an estimate for the scaling law between Knudsen number and the maximal size of the perturbation necessary for linear theory to be accurate in Sobolev regularity. We conjecture this scaling to be sharp (up to logarithmic corrections) due to potential nonlinear echoes in the collisionless model. © 2017, Springer International Publishing AG.
引用
收藏
相关论文
共 49 条
  • [1] STATIONARY SOLUTIONS OF THE VLASOV-FOKKER-PLANCK EQUATION
    DRESSLER, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1987, 9 (02) : 169 - 176
  • [2] VLASOV-FOKKER-PLANCK DESCRIPTION OF PLASMA STABILITY
    SPIGA, G
    WILLIS, BL
    ZWEIFEL, PF
    TRANSPORT THEORY AND STATISTICAL PHYSICS, 1981, 10 (04): : 149 - 160
  • [3] STEADY-STATES IN PLASMA PHYSICS - THE VLASOV-FOKKER-PLANCK EQUATION
    DRESSLER, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) : 471 - 487
  • [4] On a Vlasov-Fokker-Planck equation for stored electron beams
    Cesbron, Ludovic
    Herda, Maxime
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 404 : 316 - 353
  • [5] The fastVFP code for solution of the Vlasov-Fokker-Planck equation
    Bell, A. R.
    Sherlock, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (03)
  • [6] FRACTIONAL DIFFUSION LIMIT FOR A FRACTIONAL VLASOV-FOKKER-PLANCK EQUATION
    Aceves-Sanchez, Pedro
    Cesbron, Ludovic
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 469 - 488
  • [7] Study of bunch instabilities by the nonlinear Vlasov-Fokker-Planck equation
    Warnock, Robert L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 561 (02): : 186 - 194
  • [8] The Vlasov-Fokker-Planck equation with high dimensional parametric forcing term
    Jin, Shi
    Zhu, Yuhua
    Zuazua, Enrique
    NUMERISCHE MATHEMATIK, 2022, 150 (02) : 479 - 519
  • [9] A deterministic particle method for the Vlasov-Fokker-Planck equation in one dimension
    Wollman, Stephen
    Ozizmir, Ercument
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (02) : 316 - 365
  • [10] The diffusive limit of the Vlasov-Fokker-Planck equation with the chemotactic sensitivity coupled to a parabolic equation
    Hwang, Hyung Ju
    Jo, Hyeontae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 1224 - 1242