ROOTECTOR: Robust Android Rooting Detection Framework Using Machine Learning Algorithms

被引:0
|
作者
Wael F. Elsersy
Nor Badrul Anuar
Mohd Faizal Ab Razak
机构
[1] Universiti Malaya,Department of Computer System and Technology, Faculty of Computer Science and Information Technology
[2] University Malaysia Pahang,Faculty of Computer Systems and Software Engineering
[3] Lebuhraya Tun Razak,undefined
关键词
Android root exploits; Rooting detection; Android Malware; Machine learning; Deep learning; Hyper-parameter optimizations;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the newly launched Google protect service alerts Android users from installing rooting tools. However, Android users lean toward rooting their Android devices to gain unlimited privileges, which allows them to customize their devices and allows Android Apps to bypass all Android security logging and security system. Rooting is one of the most malicious tactics that is used by Android malware that offers malware with the ability to open backdoor, server ports, access the Android kernel commands, and silently install malicious App and make them irremovable and undetectable. The existing Android malware detection frameworks propose embedded root-exploit code detection within the Android App. However, most frameworks overlook the rooted device detection part. In addition, many evasion techniques are developed to cloak the rooted devices. The above facts pose the challenging tasks of rooting detection and the current studies highlighted a deficiency in root detection research. Hence, this study proposes “Rootector” Android Rooting Detection Framework that uses machine learning classification techniques to detect Android rooted devices. The study proposes a model using machine learning algorithms that previously proves detection performance excellence in different fields of study. The research creates a rooting dataset with more than 13,000 mobile scans, which incorporates physical Android devices as well as simulators. Using the dataset, the study evaluates the performance of the ten machine learning classifiers to identify the best classification model. The study incorporates hyper-parameter optimization techniques to define the optimal machine learning parameters. The study adopts the LASSO (least absolute shrinkage and selection operator) regression algorithm to identify the best minimum number of classification features, which forms a compact dataset. Using LASSO regression, the study proposes a compact model for Android rooting detection. The experimental evaluation results show a very promising performance of Rootector framework with about 98.16% overall accuracy using the full dataset and slightly degraded to 97.13% using the compact dataset.
引用
收藏
页码:1771 / 1791
页数:20
相关论文
共 50 条
  • [41] Head Impact Detection Using Machine Learning Algorithms
    Al Bataineh, Mohammad
    Abu Abdoun, Dana I.
    Alnuaimi, Huda
    Al-Qudah, Zouhair
    Albataineh, Zaid
    Al Ahmad, Mahmoud
    IEEE ACCESS, 2024, 12 : 4938 - 4947
  • [42] Early detection of sepsis using machine learning algorithms
    El-Aziz, Rasha M. Abd
    Rayan, Alanazi
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 111 : 47 - 56
  • [43] Detection of Stroke Disease using Machine Learning Algorithms
    Shoily, Tasfia Ismail
    Islam, Tajul
    Jannat, Sumaiya
    Tanna, Sharmin Akter
    Alif, Taslima Mostafa
    Ema, Romana Rahman
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [44] Malware Analysis and Detection Using Machine Learning Algorithms
    Akhtar, Muhammad Shoaib
    Feng, Tao
    SYMMETRY-BASEL, 2022, 14 (11):
  • [45] Ship Detection Approach Using Machine Learning Algorithms
    Hashi, Abdirahman Osman
    Hussein, Ibrahim Hassan
    Rodriguez, Octavio Ernesto Romo
    Abdirahman, Abdullahi Ahmed
    Elmi, Mohamed Abdirahman
    ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING: HEALTH INFORMATICS, INTELLIGENT SYSTEMS, DATA SCIENCE AND SMART COMPUTING, 2022, 127 : 16 - 25
  • [46] Detection of DDoS Attacks using Machine Learning Algorithms
    Saini, Parvinder Singh
    Behal, Sunny
    Bhatia, Sajal
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 16 - 21
  • [47] Bridge damage detection using machine learning algorithms
    Abedin, Mohammad
    Mokhtari, Sohrab
    Mehrabi, Armin B.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593
  • [48] Accident Severity Detection Using Machine Learning Algorithms
    Kumar, B. Naveen
    Kumar, N. Sunil
    Kumar, U. Naresh
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 324 - 334
  • [49] On using machine learning algorithms for motorcycle collision detection
    Rodegast, Philipp
    Maier, Steffen
    Kneifl, Jonas
    Fehr, Joerg
    DISCOVER APPLIED SCIENCES, 2024, 6 (06)
  • [50] Early Delirium Detection Using Machine Learning Algorithms
    Figueiredo, Celia
    Braga, Ana Cristina
    Mariz, Jose
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022 WORKSHOPS, PT I, 2022, 13377 : 555 - 570