Asymptotic Properties of Orthogonal Polynomials with Respect to a Non-discrete Jacobi-Sobolev Inner Product

被引:0
作者
Bujar Xh. Fejzullahu
Francisco Marcellán
机构
[1] University of Prishtina,Faculty of Mathematics and Sciences
[2] Universidad Carlos III de Madrid,Departamento de Matemáticas, Escuela Politécnica Superior
来源
Acta Applicandae Mathematicae | 2010年 / 110卷
关键词
Jacobi orthogonal polynomials; Jacobi-Sobolev type orthogonal polynomials; Asymptotics; 33C45; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Qn(α,β)(x)}n=0∞ denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle f,g\rangle=\int_{-1}^{1}f(x)g(x)d\mu_{\alpha,\beta}(x)+\lambda\int_{-1}^{1}f'(x)g'(x)d\nu_{\alpha,\beta}(x)$$\end{document} where λ>0 and dμα,β(x)=(x−a)(1−x)α−1(1+x)β−1dx, dνα,β(x)=(1−x)α(1+x)βdx with a<−1, α,β>0. Their inner strong asymptotics on (−1,1), a Mehler-Heine type formula as well as some estimates of the Sobolev norms of Qn(α,β) are obtained.
引用
收藏
页码:1309 / 1320
页数:11
相关论文
共 18 条
[1]  
Erdélyi T.(1994)Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials SIAM J. Math. Anal. 25 602-614
[2]  
Magnus A.P.(1991)On polynomials orthogonal with respect to certain Sobolev inner products J. Approx. Theory 65 151-175
[3]  
Nevai P.(1983)Cohen type inequalities for Jacobi, Laguerre and Hermite expansions SIAM J. Math. Anal. 14 819-833
[4]  
Iserles A.(1997)Asymptotics of Sobolev orthogonal polynomials for a Jacobi weight Methods Appl. Anal. 4 430-437
[5]  
Koch P.E.(1997)Determination of all coherent pairs J. Approx. Theory 89 321-343
[6]  
Nørsett S.P.(2002)Zeros of Sobolev orthogonal polynomials following coherent pairs J. Comput. Appl. Math. 139 253-274
[7]  
Sanz-Serna J.M.(1999)Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Jacobi type J. Comput. Appl. Math. 108 87-97
[8]  
Markett C.(1997)On Sobolev orthogonal polynomials with coherent pairs: the Jacobi case J. Comput. Appl. Math. 79 249-262
[9]  
Martínez Finkelshtein A.(1998)Asymptotics for Sobolev orthogonal polynomials with coherent pairs: the Jacobi case, type 1 Proc. Am. Math. Soc. 126 2377-2388
[10]  
Moreno-Balcázar J.J.(2002)On convergence and divergence of Fourier-Bessel series Electron. Trans. Numer. Anal. 14 223-235