On quasiconformal mappings corresponding to the beltrami equation

被引:0
|
作者
Z. V. Samsoniya
I. G. Samkharadze
机构
关键词
Integral Equation; Conformal Mapping; Singular Integral Equation; Connected Domain; Quasiconformal Mapping;
D O I
10.1007/BF02981689
中图分类号
学科分类号
摘要
By using methods of integral equations, we investigate problems of conformal and quasiconformal mappings of close domains.
引用
收藏
页码:1569 / 1577
页数:8
相关论文
共 50 条
  • [1] MANIFOLDS OF QUASICONFORMAL MAPPINGS AND THE NONLINEAR BELTRAMI EQUATION
    Astala, Kari
    Clop, Albert
    Faraco, Daniel
    Jaaskelainen, Jarmo
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 207 - 238
  • [2] Manifolds of quasiconformal mappings and the nonlinear Beltrami equation
    Kari Astala
    Albert Clop
    Daniel Faraco
    Jarmo Jääskeläinen
    Journal d'Analyse Mathématique, 2019, 139 : 207 - 238
  • [3] The Beltrami equations for quasiconformal mappings on strongly pseudoconvex hypersurfaces
    Q. Y. Wu
    W. Wang
    Siberian Mathematical Journal, 2012, 53 : 316 - 334
  • [4] The Beltrami equations for quasiconformal mappings on strongly pseudoconvex hypersurfaces
    Wu, Q. Y.
    Wang, W.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (02) : 316 - 334
  • [5] Analytic capacity and quasiconformal mappings with W1,2 Beltrami coefficient
    Clop, Albert
    Tolsa, Xavier
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (04) : 779 - 793
  • [6] ON THE DEFORMATION OF FUCHSIAN-GROUPS BY QUASICONFORMAL MAPPINGS WITH PARTIALLY VANISHING BELTRAMI COEFFICIENTS
    OHTAKE, H
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1989, 29 (01): : 69 - 90
  • [7] On a functional equation arising in the theory of quasiconformal mappings
    Kominek Z.
    aequationes mathematicae, 2005, 70 (1-2) : 37 - 42
  • [8] Logarithmic Holder continuous mappings and Beltrami equation
    Sevost'yanov, Evgeny
    Skvortsov, Sergei
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [9] INTEGRAL-EQUATION IN THEORY OF QUASICONFORMAL MAPPINGS
    KUHNAU, R
    MATHEMATISCHE NACHRICHTEN, 1977, 76 : 139 - 152
  • [10] Logarithmic Hölder continuous mappings and Beltrami equation
    Evgeny Sevost’yanov
    Sergei Skvortsov
    Analysis and Mathematical Physics, 2021, 11