Sub-Riemannian Geometry and Geodesics in Banach Manifolds

被引:0
|
作者
Sylvain Arguillère
机构
[1] Université Claude Bernard Lyon 1,Institut Camille Jordan
来源
关键词
Sub-Riemannian geometry; Banach manifolds; Controllability; Geodesics; Pontryagin maximum principle; 49K15; 53C17; 53C22; 53D25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define and study sub-Riemannian structures on Banach manifolds. We obtain extensions of the Chow–Rashevsky Theorem for exact controllability, and give conditions for the existence of a Hamiltonian geodesic flow despite the lack of a Pontryagin Maximum Principle in the infinite- dimensional setting.
引用
收藏
页码:2897 / 2938
页数:41
相关论文
共 50 条
  • [1] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Arguillere, Sylvain
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (03) : 2897 - 2938
  • [2] Homogeneous geodesics in sub-Riemannian geometry*
    Podobryaev, Alexey
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 1473 - 1483
  • [3] Branching Geodesics in Sub-Riemannian Geometry
    Mietton, Thomas
    Rizzi, Luca
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (04) : 1139 - 1151
  • [4] Branching Geodesics in Sub-Riemannian Geometry
    Thomas Mietton
    Luca Rizzi
    Geometric and Functional Analysis, 2020, 30 : 1139 - 1151
  • [5] Introduction to geodesics in sub-Riemannian geometry
    Agrachev, Andrei
    Barilari, Davide
    Boscain, Ugo
    GEOMETRY, ANALYSIS AND DYNAMICS ON SUB-RIEMANNIAN MANIFOLDS, VOL II, 2016, : 1 - 83
  • [6] Characterizations of Hamiltonian geodesics in sub-riemannian geometry
    Alcheikh M.
    Orro P.
    Pelletier F.
    Journal of Dynamical and Control Systems, 1997, 3 (3) : 391 - 418
  • [7] Characterizations of Hamiltonian geodesics in sub-Riemannian geometry
    Laboratoire de Mathématiques, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac, Cedex, France
    J Dyn Control Syst, 3 (391-418):
  • [8] Shortest and straightest geodesics in sub-Riemannian geometry
    Alekseevsky, Dmitri
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [9] THE PROBLEM OF GEODESICS IN SINGULAR SUB-RIEMANNIAN GEOMETRY
    PELLETIER, F
    BOUCHE, LV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (01): : 71 - 76
  • [10] SUB-RIEMANNIAN GEOMETRY OF STIEFEL MANIFOLDS
    Autenried, Christian
    Markina, Irina
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (02) : 939 - 959