Dirichlet-Neumann alternating algorithm for an exterior anisotropic quasilinear elliptic problem

被引:0
|
作者
Baoqing Liu
Qikui Du
机构
[1] Nanjing University of Finance and Economics and Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems,School of Applied Mathematics
[2] Nanjing Normal University and Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems,School of Mathematical Sciences
来源
关键词
quasilinear elliptic equation; domain decomposition method; natural integral equation; 65N30; 35J65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by the Kirchhoff transformation, a Dirichlet-Neumann (D-N) alternating algorithm which is a non-overlapping domain decomposition method based on natural boundary reduction is discussed for solving exterior anisotropic quasilinear problems with circular artificial boundary. By the principle of the natural boundary reduction, we obtain natural integral equation for the anisotropic quasilinear problems on circular artificial boundaries and construct the algorithm and analyze its convergence. Moreover, the convergence rate is obtained in detail for a typical domain. Finally, some numerical examples are presented to illustrate the feasibility of the method.
引用
收藏
页码:285 / 301
页数:16
相关论文
共 50 条
  • [21] SYMMETRY FOR A DIRICHLET-NEUMANN PROBLEM ARISING IN WATER WAVES
    de la Llave, Rafael
    Valdinoci, Enrico
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (5-6) : 909 - 918
  • [22] Unique identifiability of the common support of coefficients of a second order anisotropic elliptic system by the Dirichlet-Neumann map
    Jais, Mathias
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) : 3 - 16
  • [23] A Dirichlet-Neumann type algorithm for contact problems with friction
    Krause, Rolf H.
    Wohlmuth, Barbara I.
    Computing and Visualization in Science, 2002, 5 (03) : 139 - 148
  • [24] A Dirichlet-Neumann Algorithm for Mortar Saddle Point Problems
    Maksymilian Dryja
    BIT Numerical Mathematics, 2002, 42 : 740 - 752
  • [25] On the Dirichlet-Neumann Boundary Problem for Scalar Conservation Laws
    Misur, Marin
    Mitrovic, Darko
    Novak, Andrej
    MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (05) : 685 - 698
  • [26] A Schwarz lemma on the boundary for solutions to the Dirichlet-Neumann problem
    Jin, Lei
    Hu, Caicai
    JOURNAL OF ANALYSIS, 2025, 33 (01): : 211 - 224
  • [27] A Dirichlet-Neumann algorithm for mortar saddle point problems
    Dryja, M
    BIT, 2002, 42 (04): : 740 - 752
  • [28] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [29] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [30] A Nonoverlapping Domain Decomposition Method for an Exterior Anisotropic Quasilinear Elliptic Problem in Elongated Domains
    Liu, Baoqing
    Du, Qikui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013