Lyapunov exponent, ISCO and Kolmogorov–Senai entropy for Kerr–Kiselev black hole

被引:0
作者
Monimala Mondal
Farook Rahaman
Ksh. Newton Singh
机构
[1] Jadavpur University,Department of Mathematics
[2] National Defence Academy,Department of Physics
来源
The European Physical Journal C | 2021年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Geodesic motion has significant characteristics of space-time. We calculate the principle Lyapunov exponent (LE), which is the inverse of the instability timescale associated with this geodesics and Kolmogorov–Senai (KS) entropy for our rotating Kerr–Kiselev (KK) black hole. We have investigate the existence of stable/unstable equatorial circular orbits via LE and KS entropy for time-like and null circular geodesics. We have shown that both LE and KS entropy can be written in terms of the radial equation of innermost stable circular orbit (ISCO) for time-like circular orbit. Also, we computed the equation marginally bound circular orbit, which gives the radius (smallest real root) of marginally bound circular orbit (MBCO). We found that the null circular geodesics has larger angular frequency than time-like circular geodesics (Qo>Qσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_o > Q_{\sigma }$$\end{document}). Thus, null-circular geodesics provides the fastest way to circulate KK black holes. Further, it is also to be noted that null circular geodesics has shortest orbital period (Tphoton<TISCO)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(T_{photon}< T_{ISCO})$$\end{document} among the all possible circular geodesics. Even null circular geodesics traverses fastest than any stable time-like circular geodesics other than the ISCO.
引用
收藏
相关论文
共 93 条
  • [1] Abbott BP(2016)Characteristic Lyapunov Exponents and Smooth Ergodic Theory Phys. Rev. Lett. 116 061102-undefined
  • [2] Abbott BP(2016)undefined Phys. Rev. Lett. 116 131103-undefined
  • [3] Akiyama K(2019)undefined Astrophys. J. Lett. 875 L1-undefined
  • [4] Stuchlk Z(2020)undefined Universe 6 26-undefined
  • [5] Stuchlk Z(1983)undefined Bull. Astron. Inst. Czech. 34 129-undefined
  • [6] Bombelli L(1992)undefined Class. Quantum Grav. 9 2573-undefined
  • [7] Calzetta E(2000)undefined Phys. Rev. D 62 024023-undefined
  • [8] Levin J(2019)undefined Mod. Phys. Lett. A 35 2050034-undefined
  • [9] O’Reilly R(1997)undefined Phys. Rev. D 55 4848-undefined
  • [10] Copeland EJ(2000)undefined Phys. Rev. Lett. 84 3515-undefined