Irregularity of the Bergman Projection on Smooth Unbounded Worm Domains

被引:0
作者
Steven G. Krantz
Alessandro Monguzzi
Marco M. Peloso
Caterina Stoppato
机构
[1] Washington University in St. Louis,Dipartimento di Ingegneria Gestionale, dell’Informazine e della Produzione
[2] Università degli Studi di Bergamo,Dipartimento di Matematica “F. Enriques”
[3] Università degli Studi di Milano,Dipartimento di Matematica e Informatica “U. Dini”
[4] Università degli Studi di Firenze,undefined
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Bergman kernel; Bergman projection; worm domain; 32A25; 32A36; 32T20;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider smooth unbounded worm domains Zλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Z}}_\lambda $$\end{document} in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^2$$\end{document} and show that the Bergman projection, densely defined on the Sobolev spaces Hs,p(Zλ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{s,p}({\mathcal {Z}}_\lambda ),$$\end{document}p∈(1,∞),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty ),$$\end{document}s≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 0,$$\end{document} does not extend to a bounded operator Pλ:Hs,p(Zλ)→Hs,p(Zλ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\lambda :H^{s,p}({\mathcal {Z}}_\lambda )\rightarrow H^{s,p}({\mathcal {Z}}_\lambda )$$\end{document} when s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>0$$\end{document} or p≠2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne 2.$$\end{document} The same irregularity was known in the case of the non-smooth unbounded worm. This improved result shows that the irregularity of the projection is not a consequence of the irregularity of the boundary but instead of the infinite windings of the worm domain.
引用
收藏
相关论文
共 42 条
[1]  
Barrett D(1992)Behavior of the Bergman projection on the Diederich–Fornæss worm Acta Math. 168 1-10
[2]  
Barletta E(2017)Worm domains and Fefferman space–time singularities J. Geom. Phys. 120 142-168
[3]  
Dragomir S(1990)Equivalence of regularity for the Bergman projection and the Manuscr. Math. 67 25-33
[4]  
Peloso MM(2012)-Neumann operator Mich. Math. J. 61 187-198
[5]  
Boas HP(1996)Irregularity of the Bergman projection on worm domains in J. Am. Math. Soc. 9 1171-1185
[6]  
Straube EJ(2018)Global Indiana Univ. Math. J. 67 267-292
[7]  
Barrett DE(2021) irregularity of the Math. Z. 299 2171-2197
[8]  
Şahutoğlu S(2008)-Neumann problem for worm domains J. Geom. Anal. 18 478-510
[9]  
Christ M(2008)Essential norm estimates for the Houst. J. Math. 34 873-950
[10]  
Čučković Ž(2016)-Neumann operator on convex domains and worm domains Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 1153-1183