Structural basis for Na+ transport mechanism by a light-driven Na+ pump

被引:0
|
作者
Hideaki E. Kato
Keiichi Inoue
Rei Abe-Yoshizumi
Yoshitaka Kato
Hikaru Ono
Masae Konno
Shoko Hososhima
Toru Ishizuka
Mohammad Razuanul Hoque
Hirofumi Kunitomo
Jumpei Ito
Susumu Yoshizawa
Keitaro Yamashita
Mizuki Takemoto
Tomohiro Nishizawa
Reiya Taniguchi
Kazuhiro Kogure
Andrés D. Maturana
Yuichi Iino
Hiromu Yawo
Ryuichiro Ishitani
Hideki Kandori
Osamu Nureki
机构
[1] Graduate School of Science,Department of Biological Sciences
[2] The University of Tokyo,Department of Frontier Materials
[3] Nagoya Institute of Technology,Department of Developmental Biology and Neuroscience
[4] OptoBioTechnology Research Center,Department of Bioengineering Sciences
[5] Nagoya Institute of Technology,undefined
[6] PRESTO,undefined
[7] Japan Science and Technology Agency,undefined
[8] Tohoku University Graduate School of Life Sciences,undefined
[9] CREST,undefined
[10] Japan Science and Technology Agency,undefined
[11] Graduate School of Bioagricultural Sciences,undefined
[12] Nagoya University,undefined
[13] Atmosphere and Ocean Research Institute,undefined
[14] The University of Tokyo,undefined
[15] RIKEN SPring-8 Center,undefined
[16] †Present address: Department of Molecular and Cellular Physiology,undefined
[17] Stanford University School of Medicine,undefined
[18] Stanford,undefined
[19] California 94305,undefined
[20] USA.,undefined
来源
Nature | 2015年 / 521卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na+ pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na+ transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na+ transport. Together with the structure-based engineering of the first light-driven K+ pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.
引用
收藏
页码:48 / 53
页数:5
相关论文
共 50 条
  • [1] Structural basis for Na+ transport mechanism by a light-driven Na+ pump
    Kato, Hideaki E.
    Inoue, Keiichi
    Abe-Yoshizumi, Rei
    Kato, Yoshitaka
    Ono, Hikaru
    Konno, Masae
    Hososhima, Shoko
    Ishizuka, Toru
    Hoque, Mohammad Razuanul
    Kunitomo, Hirofumi
    Ito, Jumpei
    Yoshizawa, Susumu
    Yamashita, Keitaro
    Takemoto, Mizuki
    Nishizawa, Tomohiro
    Taniguchi, Reiya
    Kogure, Kazuhiro
    Maturana, Andres D.
    Iino, Yuichi
    Yawo, Hiromu
    Ishitani, Ryuichiro
    Kandori, Hideki
    Nureki, Osamu
    NATURE, 2015, 521 (7550) : 48 - U347
  • [2] Engineering a Cl--Modulated Light-Driven Na+ Pump
    Xiao, Lan
    Yang, Qifan
    Tan, Jingjing
    Ma, Baofu
    Chen, Deliang
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (70)
  • [3] Na+ Binding and Transport: Insights from Light-Driven Na+-Pumping Rhodopsin
    Yang, Qifan
    Chen, Deliang
    MOLECULES, 2023, 28 (20):
  • [4] Light-Driven Na+ Pump from Gillsia limnaea: A High-Affinity Na+ Binding Site Is Formed Transiently in the Photocycle
    Balashov, Sergei P.
    Imasheva, Eleonora S.
    Dioumaev, Andrei K.
    Wang, Jennifer M.
    Jung, Kwang-Hwan
    Lanyi, Janos K.
    BIOCHEMISTRY, 2014, 53 (48) : 7549 - 7561
  • [5] RESPIRATION-DRIVEN NA+ PUMP AND NA+ CIRCULATION IN VIBRIO-PARAHAEMOLYTICUS
    TSUCHIYA, T
    SHINODA, S
    JOURNAL OF BACTERIOLOGY, 1985, 162 (02) : 794 - 798
  • [6] UNCOUPLED EXTRUSION OF NA+ THROUGH NA+ PUMP
    LEW, VL
    HARDY, MA
    ELLORY, JC
    BIOCHIMICA ET BIOPHYSICA ACTA, 1973, 323 (02) : 251 - 266
  • [7] Intracellular Na+ activities in Aplysia gut:: Effects of transport inhibitors on the Na+ pump
    Gerencser, GA
    Kornette, KM
    Loo, SY
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 1999, 122 (02): : 221 - 226
  • [8] Coexistence of light-driven Na+ and H+ transport in a microbial rhodopsin from Nonlabens dokdonensis
    Zhao, Hongshen
    Ma, Baofu
    Ji, Liangliang
    Li, Longjie
    Wang, Huanhuan
    Chen, Deliang
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2017, 172 : 70 - 76
  • [9] Charge translocation by the Na+/K+ pump under Na+/Na+ exchange conditions:: Intracellular Na+ dependence
    Holmgren, M
    Rakowski, RF
    BIOPHYSICAL JOURNAL, 2006, 90 (05) : 1607 - 1616
  • [10] Chronic volume expansion in the rat: Proximal tubular Na+ transport and Na+ pump inhibition
    Gyory, AZ
    SalipanMoore, N
    Reddy, S
    JOURNAL OF PHYSIOLOGY-LONDON, 1996, 492 (03): : 897 - 903