A computational method for stable analytic continuation

被引:0
|
作者
Ailin Qian
机构
[1] Hubei University of Science and Technology,Department of Mathematics and Statistics
来源
Calcolo | 2013年 / 50卷
关键词
Analytic continuation; Ill-posed problem; Regularization; Modified kernel method; Regularization parameter; 35R30;
D O I
暂无
中图分类号
学科分类号
摘要
The problems of analytic continuation are, in general, severely ill-posed. In this paper we proposed a modified kernel method to solve this problem on a strip domain. The convergence estimates with an appropriate choice of the regularization parameter are obtained. Some numerical tests show that the proposed methods are effective.
引用
收藏
页码:111 / 122
页数:11
相关论文
共 50 条
  • [1] A computational method for stable analytic continuation
    Qian, Ailin
    CALCOLO, 2013, 50 (02) : 111 - 122
  • [2] An iteration method for stable analytic continuation
    Cheng, Hao
    Fu, Chu-Li
    Zhang, Yuan-Xiang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 203 - 213
  • [3] An optimal filtering method for stable analytic continuation
    Cheng, Hao
    Fu, Chu-Li
    Feng, Xiao-Li
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) : 2582 - 2589
  • [4] A simple regularization method for stable analytic continuation
    Fu, Chu-Li
    Dou, Fang-Fang
    Feng, Xiao-Li
    Qian, Zhi
    INVERSE PROBLEMS, 2008, 24 (06)
  • [5] A mollification regularization method for stable analytic continuation
    Deng, Zhi-Liang
    Fu, Chu-Li
    Feng, Xiao-Li
    Zhang, Yuan-Xiang
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (08) : 1593 - 1608
  • [6] STABLE ANALYTIC CONTINUATION AND UNITARITY
    CIULLI, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1974, A 19 (04): : 621 - 637
  • [7] A fractional Landweber iterative regularization method for stable analytic continuation
    Yang, Fan
    Wang, Qianchao
    Li, Xiaoxiao
    AIMS MATHEMATICS, 2021, 6 (01): : 404 - 419
  • [8] Approximate inverse method for stable analytic continuation in a strip domain
    Zhang, Yuan-Xiang
    Fu, Chu-Li
    Yan, Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) : 2979 - 2992
  • [9] STABLE ANALYTIC CONTINUATION WITH RATIONAL FUNCTIONS
    STEFANESCU, IS
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (01) : 175 - 188
  • [10] Stable analytic continuation using hypergeometric summation
    Tuan, VK
    INVERSE PROBLEMS, 2000, 16 (01) : 75 - 87