A Variational Principle in the Dual Pair of Reproducing Kernel Hilbert Spaces and an Application

被引:0
作者
Hyun Jae Yoo
机构
[1] Hankyong National University,Department of Applied Mathematics
来源
Journal of Statistical Physics | 2007年 / 126卷
关键词
Reproducing kernel Hilbert space; determinantal point process; Gibbs measure; interaction;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive definite, bounded linear operator A on the Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}0≔l2(E), we consider a reproducing kernel Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}+ with a reproducing kernel A(x,y). Here E is any countable set and A(x,y), x,y∊ E, is the representation of A w.r.t. the usual basis of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}0. Imposing further conditions on the operator A, we also consider another reproducing kernel Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}− with a kernel function B(x,y), which is the representation of the inverse of A in a sense, so that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}−⊃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}0⊃\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}+ becomes a rigged Hilbert space. We investigate the ratios of determinants of some partial matrices of A and B. We also get a variational principle on the limit ratios of these values. We apply this relation to show the Gibbsianness of the determinantal point process (or fermion point process) defined by the operator A(I+A)−1 on the set E.
引用
收藏
页码:325 / 354
页数:29
相关论文
共 14 条
  • [1] Aronszajn H.-O.(1950)Theory of reproducing kernels Trans. Am. Math. Soc. 68 337-404
  • [2] Georgii H. J.(2005)Conditional intensity and Gibbsianness of determinantal point process J. Stat. Phys. 118 55-84
  • [3] Yoo R.(2003)Determinantal probability measures Publ. Math. Inst. Hautes Études Sci. 98 167-212
  • [4] Lyons R.(2003)Stationary determinantal process: Phase multiplicity, Bernoullicity, entropy, and domination Duke Math. J. 120 515-575
  • [5] Lyons J. E.(1975)The coincidence approach to stochastic point processes Adv. Appl. Prob. 7 83-122
  • [6] Steif O.(1977)Some problems related to Gibbs states, canonical Gibbs states and Markovian time evolutions Z. Wahrsch. Verw. Gebiete 39 339-352
  • [7] Macchi T.(2003)Random point field associated with certain Fredholm determinant I : fermion, Poisson, and boson point processes J. Funct. Anal. 205 414-463
  • [8] Shiga T.(2003)Random point field associated with certain Fredholm determinant II : fermion shift and its ergodic and Gibbs properties Ann. Prob. 31 1533-1564
  • [9] Shirai Y.(2000)Determinantal random point fields Russ. Math. Surv. 55 923-975
  • [10] Takahashi T.(2006)Gibbsianness of fermion random point fields Math. Z. 252 27-48