Approximation of Discontinuous Signals by Exponential Sampling Series

被引:0
|
作者
Sathish Kumar Angamuthu
Prashant Kumar
Devaraj Ponnaian
机构
[1] Visvesvaraya National Institute of Technology Nagpur,Department of Mathematics
[2] Indian Institute of Science Education and Research,School of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Exponential sampling series; discontinuous functions; logarithmic modulus of smoothness; rate of approximation; round-off and time jitter errors; 41A25; 26A15; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the behaviour of the exponential sampling series Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} at jump discontinuity of the bounded signal f. We obtain a representation lemma that is used for analyzing the series Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} and we establish approximation of jump discontinuity functions by the series Swχf.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f.$$\end{document} The rate of approximation of the exponential sampling series Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} is obtained in terms of logarithmic modulus of continuity of functions and the round-off and time-jitter errors are also studied. Finally we give some graphical representation of approximation of discontinuous functions by Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} using suitable kernels.
引用
收藏
相关论文
共 45 条