Approximation of Discontinuous Signals by Exponential Sampling Series

被引:0
|
作者
Sathish Kumar Angamuthu
Prashant Kumar
Devaraj Ponnaian
机构
[1] Visvesvaraya National Institute of Technology Nagpur,Department of Mathematics
[2] Indian Institute of Science Education and Research,School of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Exponential sampling series; discontinuous functions; logarithmic modulus of smoothness; rate of approximation; round-off and time jitter errors; 41A25; 26A15; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the behaviour of the exponential sampling series Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} at jump discontinuity of the bounded signal f. We obtain a representation lemma that is used for analyzing the series Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} and we establish approximation of jump discontinuity functions by the series Swχf.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f.$$\end{document} The rate of approximation of the exponential sampling series Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} is obtained in terms of logarithmic modulus of continuity of functions and the round-off and time-jitter errors are also studied. Finally we give some graphical representation of approximation of discontinuous functions by Swχf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{w}^{\chi }f$$\end{document} using suitable kernels.
引用
收藏
相关论文
共 45 条
  • [1] Approximation of Discontinuous Signals by Exponential Sampling Series
    Angamuthu, Sathish Kumar
    Kumar, Prashant
    Ponnaian, Devaraj
    RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [2] Approximation of discontinuous signals by exponential-type generalized sampling Kantorovich series
    Kursun, Sadettin
    Acar, Tuncer
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 340 - 355
  • [3] Approximation of discontinuous functions by Kantorovich exponential sampling series
    A. Sathish Kumar
    Prashant Kumar
    P. Devaraj
    Analysis and Mathematical Physics, 2022, 12
  • [4] Approximation of discontinuous functions by Kantorovich exponential sampling series
    Kumar, A. Sathish
    Kumar, Prashant
    Devaraj, P.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
  • [5] Approximation Properties of Exponential Sampling Series in Logarithmic Weighted Spaces
    Acar, Tuncer
    Kursun, Sadettin
    Acar, Ozlem
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (03)
  • [6] Approximation by exponential sampling type neural network operators
    Shivam Bajpeyi
    A. Sathish Kumar
    Analysis and Mathematical Physics, 2021, 11
  • [7] Generalized Kantorovich forms of exponential sampling series
    Ali Aral
    Tuncer Acar
    Sadettin Kursun
    Analysis and Mathematical Physics, 2022, 12
  • [8] Approximation by exponential sampling type neural network operators
    Bajpeyi, Shivam
    Kumar, A. Sathish
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [9] Generalized Kantorovich forms of exponential sampling series
    Aral, Ali
    Acar, Tuncer
    Kursun, Sadettin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [10] Multidimensional Kantorovich modifications of exponential sampling series
    Acar, Tuncer
    Kursun, Sadettin
    Turgay, Metin
    QUAESTIONES MATHEMATICAE, 2023, 46 (01) : 57 - 72