Separability of wild automorphisms of a polynomial ring

被引:0
作者
E. Edo
T. Kanehira
M. Karaś
S. Kuroda
机构
[1] University of New Caledonia,ERIM
[2] Tokyo Metropolitan University,Department of Mathematics and Information Sciences
[3] Uniwersytetu Jagiellońskiego,Instytut Matematyki, Wydział Matematyki i Informatyki
来源
Transformation Groups | 2013年 / 18卷
关键词
Additive Group; Polynomial Ring; Fourth Author; Rational Length; Jacobian Conjecture;
D O I
暂无
中图分类号
学科分类号
摘要
For a large class (including the Nagata automorphism) of wild automorphisms F of k[x, y, z] (where k is a field of characteristic zero), we prove that we can find a weight w such that there exists no tame automorphism with the same w-weight multidegree.
引用
收藏
页码:81 / 96
页数:15
相关论文
共 24 条
  • [1] Brauer A(1942)On a problem on partitions Amer. J. Math. 64 299-312
  • [2] Edo E(2001)Length 2 variables of Ann. Polon. Math. 76 67-76
  • [3] Vénéreau S(2005)[ J. Algebra 287 15-31
  • [4] Edo E(1997), J. Algebra 195 604-623
  • [5] Furter J-P(1942)] and transfer, in: Polynomial Automorphisms and Related Topics (Krakòw, 1999) J. reine angew. Math. 184 161-174
  • [6] Jung WE(2011)Totally stably tame variables Proc. Am. Math. Soc. 139 769-775
  • [7] Karaś M(2011)On the variety of automorphisms of the affine plane Bull. Pol. Acad. Sci., Math. 59 27-32
  • [8] Karaś M(2010)Uber ganze birationale Transformationen der Ebene J. Pure Appl. Algebra 214 2144-2147
  • [9] Karaś M(2011)There is no tame automorphism of ℂ Diss. Math. 477 55-2846
  • [10] Karaś M(2011) with multidegree (3, 4, 5) J. Pure Appl. Algebra 215 2843-218