Embedded minimal surfaces in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}

被引:0
|
作者
Antonio Alarcón
Franc Forstnerič
Francisco J. López
机构
[1] Universidad de Granada,Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath
[2] University of Ljubljana,GR)
[3] Institute of Mathematics,Faculty of Mathematics and Physics
[4] Physics and Mechanics,Departamento de Geometría y Topología
[5] Universidad de Granada,undefined
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Riemann surfaces; Minimal surfaces; Conformal minimal embeddings; 53A10; 32B15; 32E30; 32H02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that every conformal minimal immersion of an open Riemann surface into Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} for n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document} can be approximated uniformly on compacts by conformal minimal embeddings (see Theorem 1.1). Furthermore, we show that every open Riemann surface carries a proper conformal minimal embedding into R5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^5$$\end{document} (see Theorem 1.2). One of our main tools is a Mergelyan approximation theorem for conformal minimal immersions to Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} for any n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} which is also proved in the paper (see Theorem 5.3).
引用
收藏
页码:1 / 24
页数:23
相关论文
共 26 条