One-loop corrections to the spectral action

被引:0
作者
Teun D. H. van Nuland
Walter D. van Suijlekom
机构
[1] Radboud University Nijmegen,Institute for Mathematics, Astrophysics and Particle Physics
来源
Journal of High Energy Physics | / 2022卷
关键词
Non-Commutative Geometry; Effective Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the perturbative quantization of the spectral action in noncommutative geometry and establish its one-loop renormalizability in a generalized sense, while staying within the spectral framework of noncommutative geometry. Our result is based on the perturbative expansion of the spectral action in terms of higher Yang-Mills and Chern-Simons forms. In the spirit of random noncommutative geometries, we consider the path integral over matrix fluctuations around a fixed noncommutative gauge background and show that the corresponding one-loop counterterms are of the same form so that they can be safely subtracted from the spectral action. A crucial role will be played by the appropriate Ward identities, allowing for a fully spectral formulation of the quantum theory at one loop.
引用
收藏
相关论文
共 62 条
  • [1] Alkofer N(2015) ℝ Phys. Rev. D 91 109-undefined
  • [2] Saueressig F(2016)undefined J. Phys. A 49 119-undefined
  • [3] Zanusso O(1980)undefined Adv. Appl. Math. 1 4868-undefined
  • [4] Barrett JW(2020)undefined Phys. Rev. D 101 991-undefined
  • [5] Glaser L(2014)undefined New J. Phys. 16 132-undefined
  • [6] Bessis D(2011)undefined Phys. Lett. B 699 011-undefined
  • [7] Itzykson C(1996)undefined Phys. Rev. Lett. 77 1045-undefined
  • [8] Zuber JB(2007)undefined Adv. Theor. Math. Phys. 11 155-undefined
  • [9] Bochniak A(2015)undefined Phys. Rev. Lett. 114 1-undefined
  • [10] Sitarz A(2013)undefined JHEP 11 068-undefined