Least-squares Polynomial Estimation from Observations Featuring Correlated Random Delays

被引:0
作者
R. Caballero-Águila
A. Hermoso-Carazo
J. Linares-Pérez
机构
[1] Universidad de Jaén,Dpto. Estadística e I.O.
[2] Universidad de Granada,Dpto. Estadística e I.O.
来源
Methodology and Computing in Applied Probability | 2010年 / 12卷
关键词
Least-squares estimation; Filtering and smoothing algorithms; Polynomial estimation; Randomly delayed observations; 60G35; 62M20;
D O I
暂无
中图分类号
学科分类号
摘要
The least-squares polynomial filtering and fixed-point smoothing problems of discrete-time signals from randomly delayed observations is addressed, when the Bernoulli random variables modelling the delay are correlated at consecutive sampling times. Recursive estimation algorithms are deduced without requiring full knowledge of the state-space model generating the signal process, but only information about the delay probabilities and the moments of the processes involved. Defining a suitable augmented observation vector, the polynomial estimation problem is reduced to the linear estimation problem of the signal based on the augmented observations, which is solved by using an innovation approach.
引用
收藏
页码:491 / 509
页数:18
相关论文
共 53 条
[21]  
Tarczynski A(undefined)undefined undefined undefined undefined-undefined
[22]  
Murphy NP(undefined)undefined undefined undefined undefined-undefined
[23]  
Välimäki V(undefined)undefined undefined undefined undefined-undefined
[24]  
Matveev AS(undefined)undefined undefined undefined undefined-undefined
[25]  
Savkin AV(undefined)undefined undefined undefined undefined-undefined
[26]  
Nakamori S(undefined)undefined undefined undefined undefined-undefined
[27]  
Caballero-Águila R(undefined)undefined undefined undefined undefined-undefined
[28]  
Hermoso-Carazo A(undefined)undefined undefined undefined undefined-undefined
[29]  
Linares-Pérez J(undefined)undefined undefined undefined undefined-undefined
[30]  
Nakamori S(undefined)undefined undefined undefined undefined-undefined