Sensitivity analysis of the Poisson Nernst–Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model

被引:0
作者
Ibrahima Dione
Nicolas Doyon
Jean Deteix
机构
[1] Université Laval,Département de mathématiques et statistique/Groupe Interdisciplinaire de Recherche en Éléments Finis (GIREF)
来源
Journal of Mathematical Biology | 2019年 / 78卷
关键词
Electrodiffusion; Finite elements; Ionic concentrations; Node of Ranvier; Sensitivity equation method; 92B05; 35Q92;
D O I
暂无
中图分类号
学科分类号
摘要
Biological structures exhibiting electric potential fluctuations such as neuron and neural structures with complex geometries are modelled using an electrodiffusion or Poisson Nernst–Planck system of equations. These structures typically depend upon several parameters displaying a large degree of variation or that cannot be precisely inferred experimentally. It is crucial to understand how the mathematical model (and resulting simulations) depend on specific values of these parameters. Here we develop a rigorous approach based on the sensitivity equation for the electrodiffusion model. To illustrate the proposed methodology, we investigate the sensitivity of the electrical response of a node of Ranvier with respect to ionic diffusion coefficients and the membrane dielectric permittivity.
引用
收藏
页码:21 / 56
页数:35
相关论文
共 108 条
[1]  
Ask M(2016)Computational models in neuroscience: How real are they? A critical review of status and suggestions Austin Neurol Neurosci 1 1008-112
[2]  
Reza M(2001)Modelling and estimating uncertainty in parameter estimation Inverse Probl 17 95-246
[3]  
Banks HT(2014)On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction–diffusion systems J Comput Appl Math 271 233-472
[4]  
Bihari KL(2000)Long time behavior of solutions to Nernst–Planck and Debye–Hückel drift–diffusion systems Ann Henri Poincaré 1 461-1209
[5]  
Belhamadia Y(1994)The Debye system: existence and large time behavior of solutions Nonlinear Anal Theory Methods Appl 23 1189-1456
[6]  
Fortin A(1997)Adic: an extensible automatic differentiation tool for ANSI-C Softw Pract Exp 27 1427-12
[7]  
Bourgault Y(2009)Poisson–Nernst–Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore PLoS Comput Biol 5 1-731
[8]  
Biler P(2015)What is the most realistic single-compartment model of spike initiation? PLoS Comput Biol 7 11269-675
[9]  
Dolbeault J(2017)Electrostatics of non-neutral biological microdomains Sci Rep 68 717-317
[10]  
Biler P(2016)Improved simulation of electrodiffusion in the node of Ranvier by mesh adaptation PLoS One 322 549560-1262