On List Decoding of Certain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q$$\end{document}-Linear Codes

被引:0
作者
N. A. Polyanskii
机构
[1] Skolkovo Institute of Science and Technology (Skoltech),
关键词
list decoding; Reed–Solomon ; -codes; minimum distance;
D O I
10.1134/S0032946021040049
中图分类号
学科分类号
摘要
We present a list decoding algorithm for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_q$$\end{document}-linear codes that generalize the Reed–Solomon \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-codes.
引用
收藏
页码:341 / 356
页数:15
相关论文
共 16 条
[1]  
Lucas E(1878)Théorie des fonctions numériques simplement périodiques Amer. J. Math. 1 289-321
[2]  
Rosenbloom MYu(1997)Codes for the Probl. Peredachi Inf. 33 55-63
[3]  
Tsfasman MA(2014)-Metric J. ACM 61 1-20
[4]  
Kopparty S(2021)High-Rate Codes with Sublinear-Time Decoding IEEE Trans. Inform. Theory 67 8051-8069
[5]  
Saraf S(2021)Lifted Reed–Solomon Codes and Lifted Multiplicity Codes IEEE Trans. Inform. Theory 67 716-725
[6]  
Yekhanin S(2015)Lifted Multiplicity Codes and the Disjoint Repair Group Property Theory Comput. 11 149-182
[7]  
Holzbaur L(2016)List-Decoding Multiplicity Codes IEEE Trans. Inform. Theory 62 2719-2725
[8]  
Polyanskaya R(undefined)List-Decoding Algorithms for Lifted Codes undefined undefined undefined-undefined
[9]  
Polyanskii N(undefined)undefined undefined undefined undefined-undefined
[10]  
Vorobyev I(undefined)undefined undefined undefined undefined-undefined