The monotonicity of the p-torsional rigidity in convex domains

被引:0
|
作者
Cristian Enache
Mihai Mihăilescu
Denisa Stancu-Dumitru
机构
[1] American University of Sharjah,Department of Mathematics and Statistics
[2] University of Craiova,Department of Mathematics
[3] “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy,Department of Mathematics and Computer Sciences
[4] University Politehnica of Bucharest,undefined
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
-Laplacian; -torsional rigidity; Distance function to the boundary; 35Q74; 47J05; 47J20; 49J40; 49S05;
D O I
暂无
中图分类号
学科分类号
摘要
For any bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document} (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}), with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, and any real number p>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1,$$\end{document} we denote by up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{p}$$\end{document} the p-torsion function on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, that is the solution of the torsional creep problemΔpu=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u=-1$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=0$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, where Δpu:=div(∇up-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u:=div( \left| \nabla u\right| ^{p-2}\nabla u) $$\end{document} is the p-Laplace operator. Our aim is to investigate the monotonicity with respect to p for the p-torsional rigidity on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, defined as TpΩ:=∫Ωupdx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{p}\left( \Omega \right) :=\int _{\Omega }u_{p}dx$$\end{document}. More precisely, we show that there exist two constants D1∈12,e-1N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1\in \left[ \frac{1}{2},e^{\frac{-1}{N+1}}\right] $$\end{document} and D2∈1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_2\in \left[ 1,N\right] $$\end{document} such that for each bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document} with |∂Ω||Ω|≤D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}\le D_1$$\end{document} the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is decreasing on 1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\infty \right) $$\end{document}, while for each bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}, with |∂Ω||Ω|≥D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}\ge D_2$$\end{document}, the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is increasing on 1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\infty \right) $$\end{document}. Moreover, for each real number s∈(D1,D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (D_1,D_2)$$\end{document} there exists a bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}, with |∂Ω||Ω|=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}=s$$\end{document}, such that the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is not monotone on (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}.
引用
收藏
页码:419 / 431
页数:12
相关论文
共 50 条
  • [21] Maximum principles and monotonicity of solutions for fractional p-equations in unbounded domains
    Liu, Zhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 1043 - 1078
  • [22] Two-Sided Estimate for the Torsional Rigidity of Convex Domain Generalizing the Polya-Szego and Makai Inequalities
    Salakhudinov, R. G.
    Gafiyatullina, L. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) : 3020 - 3032
  • [23] Torsional rigidity, isospectrality and quantum graphs
    Colladay, Don
    Kaganovskiy, Leon
    McDonald, Patrick
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (03)
  • [24] Torsional rigidity of harmonic gear drives
    Timofeev G.A.
    Kostikov Y.V.
    Timofeev, G.A. (timga@bmstu.ru), 1600, Allerton Press Incorporation (36): : 995 - 998
  • [25] Torsional rigidity of freewheel mechanisms in drives
    Sharkov O.V.
    Koryagin S.I.
    Kalinin A.V.
    Russian Engineering Research, 2017, 37 (11) : 954 - 956
  • [26] Optimization Problems Involving the First Dirichlet Eigenvalue and the Torsional Rigidity
    van den Berg, Michiel
    Buttazzo, Giuseppe
    Velichkov, Bozhidar
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 19 - 41
  • [27] Torsional rigidity of cotton hosiery yarns
    Banerjee, PK
    Bhat, P
    INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 2005, 30 (02) : 136 - 141
  • [28] Optimal Fiber Configurations for Maximum Torsional Rigidity
    Robert Lipton
    Archive for Rational Mechanics and Analysis, 1998, 144 : 79 - 106
  • [29] On relations between principal eigenvalue and torsional rigidity
    van den Berg, Michiel
    Buttazzo, Giuseppe
    Pratelli, Aldo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
  • [30] Bounds for the torsional rigidity of inhomogeneous cylindrical bars
    István Ecsedi
    Attila Baksa
    Archive of Applied Mechanics, 2013, 83 : 1001 - 1012