The monotonicity of the p-torsional rigidity in convex domains

被引:0
|
作者
Cristian Enache
Mihai Mihăilescu
Denisa Stancu-Dumitru
机构
[1] American University of Sharjah,Department of Mathematics and Statistics
[2] University of Craiova,Department of Mathematics
[3] “Gheorghe Mihoc-Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy,Department of Mathematics and Computer Sciences
[4] University Politehnica of Bucharest,undefined
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
-Laplacian; -torsional rigidity; Distance function to the boundary; 35Q74; 47J05; 47J20; 49J40; 49S05;
D O I
暂无
中图分类号
学科分类号
摘要
For any bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document} (N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}), with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, and any real number p>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1,$$\end{document} we denote by up\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{p}$$\end{document} the p-torsion function on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, that is the solution of the torsional creep problemΔpu=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u=-1$$\end{document} in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=0$$\end{document} on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}, where Δpu:=div(∇up-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{p}u:=div( \left| \nabla u\right| ^{p-2}\nabla u) $$\end{document} is the p-Laplace operator. Our aim is to investigate the monotonicity with respect to p for the p-torsional rigidity on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, defined as TpΩ:=∫Ωupdx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{p}\left( \Omega \right) :=\int _{\Omega }u_{p}dx$$\end{document}. More precisely, we show that there exist two constants D1∈12,e-1N+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_1\in \left[ \frac{1}{2},e^{\frac{-1}{N+1}}\right] $$\end{document} and D2∈1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_2\in \left[ 1,N\right] $$\end{document} such that for each bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document} with |∂Ω||Ω|≤D1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}\le D_1$$\end{document} the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is decreasing on 1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\infty \right) $$\end{document}, while for each bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}, with |∂Ω||Ω|≥D2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}\ge D_2$$\end{document}, the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is increasing on 1,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\infty \right) $$\end{document}. Moreover, for each real number s∈(D1,D2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (D_1,D_2)$$\end{document} there exists a bounded and convex set Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{N}$$\end{document}, with |∂Ω||Ω|=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{|\partial \Omega |}{|\Omega |}=s$$\end{document}, such that the function p→Tp(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow T_p(\Omega )$$\end{document} is not monotone on (1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\infty )$$\end{document}.
引用
收藏
页码:419 / 431
页数:12
相关论文
共 50 条
  • [11] Torsional Rigidity for Regions with a Brownian Boundary
    van den Berg, M.
    Bolthausen, E.
    den Hollander, F.
    POTENTIAL ANALYSIS, 2018, 48 (03) : 375 - 403
  • [12] Torsional Rigidity for Regions with a Brownian Boundary
    M. van den Berg
    E. Bolthausen
    F. den Hollander
    Potential Analysis, 2018, 48 : 375 - 403
  • [13] On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue
    M. van den Berg
    V. Ferone
    C. Nitsch
    C. Trombetti
    Integral Equations and Operator Theory, 2016, 86 : 579 - 600
  • [14] Monotonicity of positive solutions for fractional p -systems in unbounded Lipschitz domains
    Ma, Lingwei
    Zhang, Zhenqiu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [15] The Minkowski Problem for Torsional Rigidity
    Colesanti, Andrea
    Fimiani, Michele
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) : 1013 - 1039
  • [16] Torsional rigidity for tangential polygons
    Keady, Grant
    IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (06) : 1204 - 1211
  • [17] A Steklov version of the torsional rigidity
    Brasco, L.
    Gonzalez, M.
    Ispizua, M.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (07)
  • [18] Torsional Rigidity of the Advanced Actuator
    Zou Changping
    APPLIED MECHANICS AND MECHANICAL ENGINEERING, PTS 1-3, 2010, 29-32 : 2416 - 2421
  • [19] The Torsional Rigidity of a Rectangular Prism
    Tsai, Cho-Liang
    Wang, Chih-Hsing
    Hwang, Sun-Fa
    Chen, Wei-Tong
    Cheng, Chin-Yi
    MATHEMATICS, 2022, 10 (13)
  • [20] The optimal problems for torsional rigidity
    Yang, Jin
    Wei, Zhenzhen
    AIMS MATHEMATICS, 2021, 6 (05): : 4597 - 4613