Partial derivative formulas and identities involving 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {2}$$\end{document}-variable Simsek polynomials

被引:0
作者
Subuhi Khan
Tabinda Nahid
Mumtaz Riyasat
机构
[1] Aligarh Muslim University,Department of Mathematics
关键词
Partial differential equations; Recurrence relations; 2-variable Simsek polynomials; Primary 05A10; 05A15; 11B37; 11B68; 11B83; Secondary 33C05;
D O I
10.1007/s40590-019-00236-4
中图分类号
学科分类号
摘要
The 2-variable Simsek polynomials Yn(x,y;λ,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_n(x,y;\lambda , \delta )$$\end{document} are introduced as the generalization of a new family of polynomials Yn(x;λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_n(x;\lambda )$$\end{document}. Certain partial derivatives formulas and identities for the 2-variable Simsek polynomials Yn(x,y;λ,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_n(x,y;\lambda , \delta )$$\end{document} are established. A brief view of quasi-monomial approach establishing differential operators and equation is presented for these polynomials.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 18 条