Graph neural network for recommendation in complex and quaternion spaces

被引:0
|
作者
Longcan Wu
Daling Wang
Shi Feng
Xiangmin Zhou
Yifei Zhang
Ge Yu
机构
[1] Northeastern University,
[2] RMIT University,undefined
关键词
Recommendation; Collaborative filtering; Graph neural network; Non-real space;
D O I
暂无
中图分类号
学科分类号
摘要
With the development of graph neural network, researchers begin to use bipartite graph to model user-item interactions for recommendation. It is worth noting that most of graph recommendation models represent users and items in the real-valued space, which ignore the rich representational capacity of the non-real space. Besides, the simplicity and symmetry of the inner product make it ineffectively capture the intricate antisymmetric relations between users and items in interaction modeling. In this paper, based on the framework of graph neural network, we propose Graph Collaborative Filtering for recommendation in Complex and Quaternion space (GCFC and GCFQ respectively). Specifically, we first use complex embeddings or quaternion embeddings to initialize users and items. Then, the Hermitian product (for GCFC) or Hamilton product (for GCFQ) and embedding propagation layers are used to further enrich the embeddings of users and items. As such, we can obtain both latent inter-dependencies and intra-dependencies between components of users and items. Finally, we aggregate the embeddings of different propagation layers and use the Hermitian or Hamilton product with inner product to obtain the intricate antisymmetric relations between users and items. We have carried out extensive experiments on four real-world datasets to verify the effectiveness of GCFC and GCFQ.
引用
收藏
页码:3945 / 3964
页数:19
相关论文
共 50 条
  • [31] Graph contrast learning for recommendation based on relational graph convolutional neural network
    Liu, Xiaoyang
    Feng, Hanwen
    Zhang, Xiaoqin
    Zhou, Xia
    Bouyer, Asgarali
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (08)
  • [32] Quaternion-Based Graph Contrastive Learning for Recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Xian, Xuefeng
    Fang, Junhua
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [33] A Graph-Based Recommendation Algorithm on Quaternion Algebra
    Kurt Z.
    Gerek Ö.N.
    Bilge A.
    Özkan K.
    SN Computer Science, 3 (4)
  • [34] Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation
    Wei, Yuecen
    Fu, Xingcheng
    Sun, Qingyun
    Peng, Hao
    Wu, Jia
    Wang, Jinyan
    Li, Xianxian
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 528 - 537
  • [35] Research on Recommendation Algorithm Based on Heterogeneous Graph neural Network
    Chen Z.
    Li H.
    Du J.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (10): : 137 - 144
  • [36] A Graph Neural Network for Ship Link Prediction Based on Graph Attention Mechanism and Quaternion Embedding
    Zhou, Jiaqi
    Yu, Wenxian
    Zhang, Jing
    Mu, Siyuan
    Li, Yan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [37] Enhanced graph neural network for session-based recommendation
    Sheng, Zhenzhen
    Zhang, Tao
    Zhang, Yuejie
    Gao, Shang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [38] Personalized recommendation via inductive spatiotemporal graph neural network
    Gong, Jibing
    Zhao, Yi
    Zhao, Jinye
    Zhang, Jin
    Ma, Guixiang
    Zheng, Shaojie
    Du, Shuying
    Tang, Jie
    PATTERN RECOGNITION, 2024, 145
  • [39] Multi-dimensional Graph Neural Network for Sequential Recommendation
    Hao, Yongjing
    Ma, Jun
    Zhao, Pengpeng
    Liu, Guanfeng
    Xian, Xuefeng
    Zhao, Lei
    Sheng, Victor S.
    PATTERN RECOGNITION, 2023, 139
  • [40] Decentralized Graph Neural Network for Privacy-Preserving Recommendation
    Zheng, Xiaolin
    Wang, Zhongyu
    Chen, Chaochao
    Qian, Jiashu
    Yang, Yao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3494 - 3504