Analyticity of Steklov eigenvalues of nearly hyperspherical domains in Rd+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{d + 1}$$\end{document}

被引:0
作者
Chee Han Tan
Robert Viator
机构
[1] Wake Forest University,Department of Mathematics
[2] Swarthmore College,Department of Mathematics and Statistics
关键词
Dirichlet-to-Neumann operator; Steklov eigenvalues; Perturbation theory; Hyperspherical coordinates; 26E05; 35C20; 35P05; 41A58;
D O I
10.1007/s40687-023-00415-w
中图分类号
学科分类号
摘要
We consider the Dirichlet-to-Neumann operator (DNO) on nearly hyperspherical domains in dimension >3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$> 3$$\end{document}. Treating such domains as perturbations of the ball, we prove the analytic dependence of the DNO on the shape perturbation parameter for fixed perturbation functions. Consequently, we conclude that the Steklov eigenvalues are analytic in the shape perturbation parameter as well. To obtain these results, we use the strategy of Nicholls and Nigam (J Comput Phys 194(1):278–303, 2004. https://doi.org/10.1016/j.jcp.2003.09.006), and Viator and Osting (Proc R Soc A 474(2220):20180072, 2018. https://doi.org/10.1098/rspa.2018.0072); we transform the Laplace-Dirichlet problem on the perturbed domain to a more complicated, parameter-dependent equation on the ball, and then geometrically bound the Neumann expansion of the transformed DNO. These results are a generalization of the work of Viator and Osting (2020) for dimension 2 and 3.
引用
收藏
相关论文
共 31 条