A generalization of an extended stochastic integral

被引:0
作者
Albeverio S. [1 ]
Berezansky Yu.M. [2 ]
Tesko V.A. [2 ]
机构
[1] Institut für Angewandte Mathematik, Universität Bonn, Bonn
[2] Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv
关键词
Hilbert Space; Stochastic Integral; Complex Hilbert Space; Poisson Measure; Functional Realization;
D O I
10.1007/s11253-007-0044-x
中图分类号
学科分类号
摘要
We propose a generalization of an extended stochastic integral to the case of integration with respect to a broad class of random processes. In particular, we obtain conditions for the coincidence of the considered integral with the classical Itô stochastic integral. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:645 / 677
页数:32
相关论文
共 56 条
[41]  
Berezansky Yu. M., Poisson measure as the spectral measure of Jacobi fields, Inf. Dimen. Anal. Quant. Probab. Relat. Top., 3, pp. 121-139, (2000)
[42]  
Krein M.G., Fundamental aspects of the theory of representation of Hermitian operators with deficiency index (m, m), Ukr. Mat. Zh., 1, pp. 3-66, (1949)
[43]  
Krein M.G., Infinite J-matrices and a matrix moment problem, Dokl. Akad. Nauk SSSR, 69, pp. 125-128, (1949)
[44]  
Berezansky Yu. M., Sheftel Z.G., Us G.F., Functional Analysis, (1996)
[45]  
Lytvynov E.W., Multiple Wiener integrals and non-Gaussian white noise: A field approach, Meth. Funct. Anal. Topol., 1, pp. 61-85, (1995)
[46]  
Ito Y., Kubo I., Calculus on Gaussian and Poissonian white noise, Nagoya Math. J., 111, pp. 41-84, (1988)
[47]  
Privault N., Wu J.L., Poisson stochastic integration in Hilbert spaces, Ann. Math. Univ. B. Pascal, 6, pp. 41-61, (1999)
[48]  
Akhiezer N.I., Glazman I.M., The Theory of Linear Operators in Hilbert Space, (1961)
[49]  
Sh. B.M., Solomyak M.Z., Spectral Theory of Self-Adjoint Operators in Hilbert Spaces, (1980)
[50]  
Liptser R.S., Shiryaev A.N., Statistics of Random Processes, (1974)