Formation of spinel structured compounds in the lithium permanganate thermal decomposition

被引:0
作者
Alexander A. Andriiko
Arseniy Ye. Shpak
Yuriy O. Andriyko
José R. García
Sergei A. Khainakov
Nataliya Ye. Vlasenko
机构
[1] National Technical University of Ukraine “KPI”,Chair of General and Inorganic Chemistry, Chemical Technology Faculty
[2] CEST—Centre of Electrochemical Surface Technology,Departamento de Química Orgánica e Inorgánica
[3] Universidad de Oviedo—CINN,undefined
来源
Journal of Solid State Electrochemistry | 2012年 / 16卷
关键词
Lithium permanganate; Thermal decomposition; Overstoichiometric spinels; Electrochemical properties;
D O I
暂无
中图分类号
学科分类号
摘要
Products of thermal decomposition of lithium permanganate LiMnO4·3H2O, which are formed in temperature range 160–900 °C, have been characterized by powder XRD and chemical analysis. It has been found that the decomposition of the permanganate results in the formation of an equimolar mixture of manganate(IV) Li2MnO3 and stoichiometric spinel LiMn2O4 at the temperatures above 700 °C. Intermediate products with spinel structure are formed at lower temperatures with oxidation number of manganese being between +4 and +3.5. These compounds can be related to overstoichiometric spinel phases with general formula Lia[Mn(1 + 0.5a)Li(1 − 0.5a)]O4, where a > 1. Electrochemical properties of these intermediates with regard to the reaction of Li extraction were investigated. The data are of interest for the development of synthesis methods for mixed oxides containing lithium and manganese with lithium permanganate as the lithiating reagent.
引用
收藏
页码:1993 / 1998
页数:5
相关论文
共 50 条
  • [21] Thermodynamic Study of Thermal Decomposition of Magnesium Chloride Compounds
    Jia Qian
    Chen Zhen
    Wu Yu-Long
    Yang Ming-De
    Wang Xue-Kui
    Tang Na
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2011, 27 (08) : 1529 - 1535
  • [22] Thermal decomposition study of hydrotalcite-like compounds
    Nebot-Díaz, I
    Rives, V
    Rocha, J
    Carda, JB
    BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO, 2002, 41 (04): : 411 - 414
  • [23] Thermal decomposition of polynitro compounds under nonisothermal conditions
    Stepanov, RS
    Kruglyakova, LA
    Astakhov, AM
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2006, 42 (01) : 63 - 67
  • [24] Volatile technetium carbonyl compounds: Vaporization and thermal decomposition
    G. V. Sidorenko
    Radiochemistry, 2010, 52 (6) : 638 - 652
  • [25] Thermal Decomposition of Polynitro Compounds under Nonisothermal Conditions
    R. S. Stepanov
    L. A. Kruglyakova
    A. M. Astakhov
    Combustion, Explosion and Shock Waves, 2006, 42 : 63 - 67
  • [26] Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction
    Wang, QS
    Sun, JH
    Lu, SX
    Yao, XL
    Chen, CH
    SOLID STATE IONICS, 2006, 177 (1-2) : 137 - 140
  • [27] Thermal decomposition behavior of graphite anodes for lithium ion batteries
    Honbo, H
    Muranaka, Y
    Kita, F
    ELECTROCHEMISTRY, 2001, 69 (09) : 686 - 691
  • [28] In Situ Spinel Formation in a Smart Nano-Structured Matrix for No-Cement Refractory Castables
    Madej, Dominika
    Tyrala, Karina
    MATERIALS, 2020, 13 (06)
  • [29] Study on the Thermal Decomposition Behavior of MgAl- hydrotalcite compounds
    Yao, Runsheng
    Wu, Xu
    Du, Yali
    Xie, Xianmei
    Wang, Zhizhong
    NEW MATERIALS AND ADVANCED MATERIALS, PTS 1 AND 2, 2011, 152-153 : 1451 - 1456
  • [30] Praseodymium oxide formation by thermal decomposition of a praseodymium complex
    Popa, M
    Kakihana, M
    SOLID STATE IONICS, 2001, 141 : 265 - 272