Self-Assembly of Amphiphilic Dendrimers: The Role of Generation and Alkyl Chain Length in siRNA Interaction

被引:0
|
作者
Valeria Márquez-Miranda
Ingrid Araya-Durán
María Belén Camarada
Jeffrey Comer
Jesús A. Valencia-Gallegos
Fernando Danilo González-Nilo
机构
[1] Universidad Andres Bello,
[2] Facultad de Biología,undefined
[3] Center for Bioinformatics and Integrative Biology (CBIB),undefined
[4] Fundación Fraunhofer Chile Research,undefined
[5] Universidad Bernardo O Higgins,undefined
[6] Laboratorio de Bionanotecnología,undefined
[7] General Gana 1702,undefined
[8] Kansas State University,undefined
[9] Nanotechnology Innovation Center of Kansas State,undefined
[10] Institute of Computational Comparative Medicine,undefined
[11] Anatomy and Physiology,undefined
[12] Kansas,undefined
[13] USA ,undefined
[14] Centro de Biotecnología FEMSA,undefined
[15] Escuela de Ingeniería y Ciencias,undefined
[16] Tecnológico de Monterrey,undefined
[17] Av. Eugenio Garza Sada 2501 Sur,undefined
[18] Col. Tecnológico,undefined
[19] Centro Interdisciplinario de Neurociencia de Valparaíso,undefined
[20] Facultad de Ciencias,undefined
[21] Universidad de Valparaíso,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA.
引用
收藏
相关论文
共 50 条
  • [31] Controllable self-assembly of RNA dendrimers
    Sharma, Ashwani
    Haque, Farzin
    Pi, Fengmei
    Shlyakhtenko, Lyudmila S.
    Evers, B. Mark
    Guo, Peixuan
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2016, 12 (03) : 835 - 844
  • [32] Self-Assembly of Alkanedithiols on Au(111) from Solution: Effect of Chain Length and Self-Assembly Conditions
    Daza Millone, Maria Antonieta
    Hamoudi, Hicham
    Rodriguez, Luis
    Rubert, Aldo
    Benitez, Guillermo A.
    Elena Vela, Maria
    Salvarezza, Roberto C.
    Esteban Gayone, J.
    Sanchez, Esteban A.
    Grizzi, Oscar
    Dablemont, Celine
    Esaulov, Vladimir A.
    LANGMUIR, 2009, 25 (22) : 12945 - 12953
  • [33] Role of the alkyl chain number and head groups location on surfactants self-assembly in aqueous solutions
    Jurasin, Darija
    Habus, Ivan
    Filipovic-Vincekovic, Nada
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 368 (1-3) : 119 - 128
  • [34] Solvent-controlled self-assembly of amphiphilic cholic acid-modified PAMAM dendrimers
    Zhang, Kun
    Yu, Ao
    Wang, Dawei
    Yang, Wenming
    Li, Jinna
    Zhang, Xinrui
    Wang, Yongjian
    MATERIALS LETTERS, 2011, 65 (02) : 293 - 295
  • [35] Self-Assembly of Amphiphilic Janus Dendrimers into Mechanically Robust Supramolecular Hydrogels for Sustained Drug Release
    Nummelin, Sami
    Liljestrom, Ville
    Saarikoski, Eve
    Ropponen, Jarmo
    Nykanen, Antti
    Linko, Veikko
    Seppala, Jukka
    Hirvonen, Jouni
    Ikkala, Olli
    Bimbo, Luis M.
    Kostiainen, Mauri A.
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (41) : 14433 - 14439
  • [36] Synthesis and self-assembly of amphiphilic dendrimers based on aliphatic polyether-type dendritic cores
    Cho, BK
    Jain, A
    Nieberle, J
    Mahajan, S
    Wiesner, U
    Gruner, SM
    Türk, S
    Räder, HJ
    MACROMOLECULES, 2004, 37 (11) : 4227 - 4234
  • [37] Thermosensitive Amphiphilic Janus Dendrimers with Embedded Metal Binding Sites. Synthesis and Self-Assembly
    Liu, Xin
    Gitsov, Ivan
    MACROMOLECULES, 2018, 51 (14) : 5085 - 5100
  • [38] Coarse-Grained Molecular Dynamics Simulations of the Self-Assembly of Amphiphilic Dendrimers as Gene Carriers
    Marquez-Miranda, Valeria
    Araya, Iingrid
    Belen Camarada, Maria
    Ratjen, Lars
    Carolina Otero, Maria
    Danilo Gonzalez-Nilo, Fernando
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 172A - 172A
  • [39] Synthesis and self-assembly of amphiphilic glycopolymers
    McRae, Michelle M.
    Foley, Olivia W.
    Goh, Sarah L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [40] Self-assembly of amphiphilic polymers.
    Lindman, B
    Alexandridis, P
    Olsson, U
    Piculell, L
    Thuresson, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 194 - COLL