40 bilinear relations of q-Painlevé VI from N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Chern-Simons theory

被引:0
作者
Sanefumi Moriyama
Tomoki Nosaka
机构
[1] University of Chinese Academy of Sciences,Kavli Institute for Theoretical Sciences
[2] Osaka Metropolitan University,Department of Physics, Graduate School of Science
[3] Osaka Metropolitan University,Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP)
[4] Osaka Metropolitan University,Osaka Central Advanced Mathematical Institute (OCAMI)
关键词
Chern-Simons Theories; Integrable Hierarchies; Matrix Models; Supersymmetry and Duality;
D O I
10.1007/JHEP08(2023)191
中图分类号
学科分类号
摘要
We investigate partition functions of the circular-quiver supersymmetric Chern-Simons theory which corresponds to the q-deformed Painlevé VI equation. From the partition functions with the lowest rank vanishing, where the circular quiver reduces to a linear one, we find 40 bilinear relations. The bilinear relations extend naturally to higher ranks if we regard these partition functions as those in the lowest order of the grand canonical partition functions in the fugacity. Furthermore, we show that these bilinear relations are a powerful tool to determine some unknown partition functions. We also elaborate the relation with some previous works on q-Painlevé equations.
引用
收藏
相关论文
共 180 条
  • [1] Donagi R(1996) = 6 Nucl. Phys. B 460 299-undefined
  • [2] Witten E(2008) = 4 JHEP 10 091-undefined
  • [3] Aharony O(2010) q JHEP 06 097-undefined
  • [4] Bergman O(2008) ( Prog. Theor. Phys. 120 509-undefined
  • [5] Jafferis DL(1996)) Nucl. Phys. B 475 164-undefined
  • [6] Maldacena J(2010) SL(2 JHEP 03 089-undefined
  • [7] Gaiotto D(2011) Z) Commun. Math. Phys. 306 511-undefined
  • [8] Witten E(2011) = 4 JHEP 11 141-undefined
  • [9] Imamura Y(2011) = 6 JHEP 08 001-undefined
  • [10] Kimura K(2012)SU( J. Stat. Mech. 1203 P03001-undefined