Parameter Estimation and Optimal Filtering for Fractional Type Stochastic Systems

被引:35
|
作者
M.L. Kleptsyna
A. Le Breton
M.-C. Roubaud
机构
[1] Institute of Information Transmission Problems,Laboratoire de Modélisation et Calcul
[2] Université J. Fourier,LATP/ INRIA
[3] Université J. Fourier,undefined
关键词
fractional Brownian motion; innovation process; Girsanov formula; maximum likelihood; optimal filtering;
D O I
10.1023/A:1009923431187
中图分类号
学科分类号
摘要
Stochastic systems driven by fractional Brownian motions are investigated. At first analogs of the usual representation theorems and Girsanov's formula are derived. Then the tools are applied to solve some statistical problems of parameter estimation and optimal filtering.
引用
收藏
页码:173 / 182
页数:9
相关论文
共 50 条
  • [41] PARAMETER ESTIMATION IN DISTRIBUTED SYSTEMS: OPTIMAL DESIGN
    Banks, H. T.
    Rehm, K. L.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2014, 2 (01): : 70 - 80
  • [42] Optimal parameter estimation of open quantum systems*
    Ji, Yinghua
    Ke, Qiang
    Hu, Juju
    CHINESE PHYSICS B, 2020, 29 (12)
  • [43] Robust H2 optimal filtering for continuous-time stochastic systems with polytopic parameter uncertainty
    Lee, Kwan Ho
    Huang, Biao
    AUTOMATICA, 2008, 44 (10) : 2686 - 2690
  • [44] Particle filtering based parameter estimation for systems with output-error type model structures
    Ding, Jie
    Chen, Jiazhong
    Lin, Jinxing
    Wan, Lijuan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (10): : 5521 - 5540
  • [45] Design for estimation of the drift parameter in fractional diffusion systems
    Alexandre Brouste
    Marina Kleptsyna
    Alexandre Popier
    Statistical Inference for Stochastic Processes, 2012, 15 (2) : 133 - 149
  • [46] OPTIMAL STOCHASTIC DESIGN FOR MULTI-PARAMETER ESTIMATION PROBLEMS
    Soganci, Hamza
    Gezici, Sinan
    Arikan, Orhan
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [47] Optimal state estimation for singular system with stochastic uncertain parameter
    Yu, Xingkai
    Li, Jianxun
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2020, 41 (04): : 1001 - 1015
  • [48] OPTIMAL PARAMETER SELECTION FOR STOCHASTIC ITO DIFFERENTIAL SYSTEMS
    AHMED, NU
    TEO, KL
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1975, 6 (08) : 749 - 754
  • [49] Optimal Control Algorithm for Stochastic Systems with Parameter Drift
    Zhang, Xiaoyan
    Gao, Song
    Chen, Chaobo
    Huang, Jiaoru
    SENSORS, 2023, 23 (12)
  • [50] OPTIMAL CONTROL OF STOCHASTIC LINEAR DISTRIBUTED PARAMETER SYSTEMS
    BENSOUSSAN, A
    VIOT, M
    SIAM JOURNAL ON CONTROL, 1975, 13 (04): : 904 - 926