Simultaneous optimization of phononic and electronic transport in two-dimensional Bi2O2Se by defect engineering

被引:4
作者
Yang, Fang [1 ]
Ng, Hong Kuan [2 ]
Wu, Jing [2 ]
Zhao, Yunshan [3 ,4 ]
Lu, Junpeng [1 ]
机构
[1] Southeast Univ, Sch Phys, Nanjing 211189, Peoples R China
[2] Inst Mat Res & Engn, Agcy Sci Technol & Res, Singapore 138634, Singapore
[3] Nanjing Normal Univ, NNU SULI Thermal Energy Res Ctr NSTER, Nanjing 210023, Peoples R China
[4] Nanjing Normal Univ, Ctr Quantum Transport & Thermal Energy Sci CQTES, Sch Phys & Technol, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
2D Bi2O2Se; thermal conductivity; oxygens defects; phonon scattering; mobility; THERMAL-CONDUCTIVITY; SCATTERING;
D O I
10.1007/s11432-023-3758-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Defect engineering represents one degree of freedom to tune the physical and chemical properties of two-dimensional (2D) materials. Here, we demonstrate that the thermal and electronic properties of 2D Bi2O2Se can be optimized simultaneously by introducing oxygen defects. 2D Bi2O2Se and its oxygen-deficient counterpart (Bi2OxSe, x < 2) can be controllably synthesized by the chemical vapor deposition (CVD) method. By introducing oxygen defects, the thermal conductivity of 2D Bi2O2Se is reduced by nearly three times, achieving an extremely low thermal conductivity of 0.68 +/- 0.06 W/mK at room temperature via the thermal bridge technique. This low thermal conductivity is enabled by the scattering of phonons by targeting of high-, mid-, and low-frequency phonons due to oxygen defects, strong anharmonicity, and nanostructure boundaries, respectively. Meanwhile, the mobility is also improved to 260-500 cm(2)center dot V-1 center dot s(-1) and the usual polar optical phonon scattering in 2D Bi2O2Se is weakened owing to the introduction of oxygen defects. Our results promise potential applications for thermoelectric design, nanoelectronics, and thermal barrier coating devices based on emerging 2D materials.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Thermal conductivity of suspended few-layer MoS2 [J].
Aiyiti, Adili ;
Hu, Shiqian ;
Wang, Chengru ;
Xi, Qing ;
Cheng, Zhaofang ;
Xia, Minggang ;
Ma, Yanling ;
Wu, Jianbo ;
Guo, Jie ;
Wang, Qilang ;
Zhou, Jun ;
Chen, Jie ;
Xu, Xiangfan ;
Li, Baowen .
NANOSCALE, 2018, 10 (06) :2727-2734
[2]   Graphene and two-dimensional materials for silicon technology [J].
Akinwande, Deji ;
Huyghebaert, Cedric ;
Wang, Ching-Hua ;
Serna, Martha I. ;
Goossens, Stijn ;
Li, Lain-Jong ;
Wong, H. -S. Philip ;
Koppens, Frank H. L. .
NATURE, 2019, 573 (7775) :507-518
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion [J].
Cai, Qiran ;
Scullion, Declan ;
Gan, Wei ;
Falin, Alexey ;
Zhang, Shunying ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Chen, Ying ;
Santos, Elton J. G. ;
Li, Lu Hua .
SCIENCE ADVANCES, 2019, 5 (06)
[5]   Recent Progress on Two-Dimensional Materials [J].
Chang, Cheng ;
Chen, Wei ;
Chen, Ye ;
Chen, Yonghua ;
Chen, Yu ;
Ding, Feng ;
Fan, Chunhai ;
Fan, Hong Jin ;
Fan, Zhanxi ;
Gong, Cheng ;
Gong, Yongji ;
He, Qiyuan ;
Hong, Xun ;
Hu, Sheng ;
Hu, Weida ;
Huang, Wei ;
Huang, Yuan ;
Ji, Wei ;
Li, Dehui ;
Li, Lain-Jong ;
Li, Qiang ;
Lin, Li ;
Ling, Chongyi ;
Liu, Minghua ;
Liu, Nan ;
Liu, Zhuang ;
Loh, Kian Ping ;
Ma, Jianmin ;
Miao, Feng ;
Peng, Hailin ;
Shao, Mingfei ;
Song, Li ;
Su, Shao ;
Sun, Shuo ;
Tan, Chaoliang ;
Tang, Zhiyong ;
Wang, Dingsheng ;
Wang, Huan ;
Wang, Jinlan ;
Wang, Xin ;
Wang, Xinran ;
Wee, Andrew T. S. ;
Wei, Zhongming ;
Wu, Yuen ;
Wu, Zhong-Shuai ;
Xiong, Jie ;
Xiong, Qihua ;
Xu, Weigao ;
Yin, Peng ;
Zeng, Haibo .
ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (12)
[6]   High-Fidelity Transfer of 2D Bi2O2Se and Its Mechanical Properties [J].
Chen, Wenjun ;
Khan, Usman ;
Feng, Simin ;
Ding, Baofu ;
Xu, Xiaomin ;
Liu, Bilu .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
[7]   Raman Spectra and Strain Effects in Bismuth Oxychalcogenides [J].
Cheng, Ting ;
Tan, Congwei ;
Zhang, Shuqing ;
Tu, Teng ;
Peng, Hailin ;
Liu, Zhirong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (34) :19970-19980
[8]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[9]   Organic Ion Template-Guided Solution Growth of Ultrathin Bismuth Oxyselenide with Tunable Electronic Properties for Optoelectronic Applications [J].
Dang, Le-Yang ;
Liu, Mingqiang ;
Wang, Gui-Gen ;
Zhao, Da-Qiang ;
Han, Jie-Cai ;
Zhu, Jia-Qi ;
Liu, Zheng .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (31)
[10]   POLAR OPTICAL-PHONON SCATTERING IN 3-DIMESIONAL AND 2-DIMENSIONAL ELECTRON GASES [J].
GELMONT, BL ;
SHUR, M ;
STROSCIO, M .
JOURNAL OF APPLIED PHYSICS, 1995, 77 (02) :657-660