Semianalytical Solution for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} Plume Shape and Pressure Evolution During \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} Injection in Deep Saline Formations

被引:0
作者
V. Vilarrasa
J. Carrera
D. Bolster
M. Dentz
机构
[1] GHS,GHS, Department of Geotechnical Engineering and Geosciences
[2] Institute of Environmental Assessment and Water Research (IDAEA),Environmental Fluid Dynamics Laboratories, Department of Civil Engineering
[3] CSIC,undefined
[4] Technical University of Catalonia (UPC-BarcelonaTech),undefined
[5] University of Notre Dame,undefined
关键词
Sharp interface; compressibility; Buoyancy; Two phase flow; Numerical solution;
D O I
10.1007/s11242-012-0109-7
中图分类号
学科分类号
摘要
The injection of supercritical carbon dioxide (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2})$$\end{document} in deep saline aquifers leads to the formation of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} rich phase plume that tends to float over the resident brine. As pressure builds up, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} density will increase because of its high compressibility. Current analytical solutions do not account for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} compressibility and consider a volumetric injection rate that is uniformly distributed along the whole thickness of the aquifer, which is unrealistic. Furthermore, the slope of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} pressure with respect to the logarithm of distance obtained from these solutions differs from that of numerical solutions. We develop a semianalytical solution for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} plume geometry and fluid pressure evolution, accounting for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} compressibility and buoyancy effects in the injection well, so \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} is not uniformly injected along the aquifer thickness. We formulate the problem in terms of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} potential that facilitates solution in horizontal layers, with which we discretize the aquifer. Capillary pressure is considered at the interface between the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} rich phase and the aqueous phase. When a prescribed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} mass flow rate is injected, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} advances initially through the top portion of the aquifer. As \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} is being injected, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} plume advances not only laterally, but also vertically downwards. However, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} plume does not necessarily occupy the whole thickness of the aquifer. We found that even in the cases in which the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} plume reaches the bottom of the aquifer, most of the injected \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} enters the aquifer through the layers at the top. Both \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} plume position and fluid pressure compare well with numerical simulations. This solution permits quick evaluations of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} plume position and fluid pressure distribution when injecting supercritical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CO}_{2}$$\end{document} in a deep saline aquifer.
引用
收藏
页码:43 / 65
页数:22
相关论文
共 103 条
[1]  
Altunin VV(1972)Viscosity of liquid and gaseous carbon dioxide at temperatures 220–1300 K and pressure up to 1200 bar Teploenergetika 8 85-89
[2]  
Sakhabetdinov MA(2009)Large-scale impact of $$\text{ CO}_{2}$$ storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems Int. J. Greenh. Gas Control 3 181-194
[3]  
Birkholzer J.T.(2009)Practical modeling approaches for geological storage of carbon dioxide Ground Wat. 47 627-638
[4]  
Zhou Q.(2009)Abrupt-interface solution for carbon dioxide injection into porous media Transp. Porous Media 79 15-27
[5]  
Tsang C.-F.(2009)Response to “Comments on abrupt-interface solution for carbon dioxide injection into porous media by Dentz and Tartakovsky (2008)” by Lu et al. Transp. Porous Media 79 39-41
[6]  
Celia MA(2010)Geomechanical issues of anthropogenic Energy Convers. Manage. 51 1918-1928
[7]  
Nordbotten JM(2008) sequestration in exploited gas fields IES J. Part A: Civil Struct. Eng. 1 2-16
[8]  
Dentz M(2007)Upslope plume migration and implications for geological J. Fluid Mech. 577 363-383
[9]  
Tartakovsky DM(2008) sequestration in deep saline aquifers J. Fluid Mech. 611 35-60
[10]  
Dentz M(2009)Gravity currents in horizontal porous layers: transition from early to late self-similarity J. Fluid Mech. 640 441-452