On the first simultaneous sign change for Fourier coefficients associated with Hecke–Maass forms

被引:0
作者
Guodong Hua
机构
[1] Shandong University,School of Mathematics
来源
The Ramanujan Journal | 2022年 / 59卷
关键词
Hecke–Maass forms; Fourier coefficients; Sign changes; Primary 11F41; Secondary 11F30;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two distinct Hecke–Maass cusp forms of weight zero for SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb {Z})$$\end{document} with Laplacian eigenvalues 14+u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+u^{2}$$\end{document} and 14+v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{4}+v^{2}$$\end{document}, respectively. Let λf(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(n)$$\end{document} and λg(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{g}(n)$$\end{document} be the real normalized Fourier coefficients satisfies λf(1)=λg(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{f}(1)=\lambda _{g}(1)=1$$\end{document}. Then in this paper we give a quantitative result concerning the sign changes of {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _{f}(n)\lambda _{g}(n)\}_{n\in \mathbb {N}}$$\end{document} in a short interval. We refine the results given by Kumari and Sengupta (Ramanujan J 55:205–218, 2021) concerning the first sign change of the sequence {λf(n)λg(n)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\lambda _{f}(n)\lambda _{g}(n)\}_{n\in \mathbb {N}}$$\end{document}.
引用
收藏
页码:559 / 570
页数:11
相关论文
共 49 条
  • [1] Aggarwal K(2021)A new subconvex bound for Int. J. Number Theory 17 1111-1138
  • [2] Bourgain J(2017)-functions in the Am. Math. Soc. 30 205-224
  • [3] Gelbart S(1978)-aspect Ann. Sci. École Norm. Sup. 11 471-542
  • [4] Jacquet H(2015)Decoupling, exponential sums and the Riemann zeta function Arch. Math. 105 413-424
  • [5] Gun S(1994)A relation between automorphic representations of Ann. Math. 140 161-181
  • [6] Kohnen W(2007) and Int. J. Number Theory 3 355-363
  • [7] Rath P(1981)Simultaneous sign change of Fourier-coefficients of two cusp forms Am. J. Math. 103 499-558
  • [8] Hoffstein J(1981)Coefficients of Maass forms and the Siegel zero Am. J. Math. 103 777-815
  • [9] Lockhart P(2002)The first sign change of Hecke eigenvalue Duke Math. J. 112 177-107
  • [10] Iwaniec H(2003)On the Euler products and the classification of automorphic representations I Ramanujan J. 7 269-277