Homotopical Morita theory for corings

被引:0
作者
Alexander Berglund
Kathryn Hess
机构
[1] Stockholm University,Department of Mathematics
[2] École Polytechnique Fédérale de Lausanne,SV BMI UPHESS
来源
Israel Journal of Mathematics | 2018年 / 227卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A coring (A,C) consists of an algebra A in a symmetric monoidal category and a coalgebra C in the monoidal category of A-bimodules. Corings and their comodules arise naturally in the study of Hopf–Galois extensions and descent theory, as well as in the study of Hopf algebroids. In this paper, we address the question of when two corings (A,C) and (B,D) in a symmetric monoidal model category V are homotopically Morita equivalent, i.e., when their respective categories of comodules VAC and VBD are Quillen equivalent. As an illustration of the general theory, we examine homotopical Morita theory for corings in the category of chain complexes over a commutative ring.
引用
收藏
页码:239 / 287
页数:48
相关论文
共 37 条
[1]  
Barthel T.(2014)Six model structures for DG-modules over DGAs: model category theory in homological action New York Journal of Mathematics 20 1077-1159
[2]  
May J. P.(2015)Left-induced model category structures on diagram categories Contemporary Mathematics 641 49-81
[3]  
Riehl E.(2018)Motivic homotopical Galois extensions Topology and its Applications 235 290-338
[4]  
Bayeh M.(2018)Homotopic Hopf–Galois extensions revisited Journal of Noncommutative Geometry 12 107-155
[5]  
Hess K.(2014)Coalgebraic models for combinatorial model categories Homology, Homotopy and Applications 16 171-184
[6]  
Karpova V.(1960)Abstract description of some basic functors Journal of the Indian Mathematical Society 24 231-234
[7]  
Kedziorek M.(2017)A necessary and sufficient condition for induced model structures Journal of Topology 10 324-369
[8]  
Riehl E.(2014)The homotopy theory of coalgebras over a comonad Proceedings of the London Mathematical Society 108 484-516
[9]  
Shipley B.(2002)Morita theory for Hopf algebroids and presheaves of groupoids American Journal of Mathematics 124 1289-1318
[10]  
Beaudry A.(2005)Comodules and Landweber exact homology theories Advances in Mathematics 192 427-456