The moduli space of vacua of N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} theories

被引:0
作者
Dan Xie
Kazuya Yonekura
机构
[1] Institute for Advanced Study,School of Natural Sciences
关键词
Supersymmetric gauge theory; Extended Supersymmetry; Brane Dynamics in Gauge Theories;
D O I
10.1007/JHEP10(2014)134
中图分类号
学科分类号
摘要
We develop a systematic method to describe the moduli space of vacua of four dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin’s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examples including N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SQCD, TN theory and Argyres-Douglas theories.
引用
收藏
相关论文
共 88 条
[1]  
Seiberg N(1994)Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD Nucl. Phys. B 431 484-undefined
[2]  
Witten E(1985)Lagrangians of N = 2 Supergravity - Matter Systems Nucl. Phys. B 255 569-undefined
[3]  
de Wit B(1996)The Moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD Nucl. Phys. B 471 159-undefined
[4]  
Lauwers PG(1997)Solutions of four-dimensional field theories via M-theory Nucl. Phys. B 500 3-undefined
[5]  
Van Proeyen A(1997)N=2 supersymmetric gauge theories, branes and orientifolds Nucl. Phys. B 507 197-undefined
[6]  
Argyres PC(1997)M theory and Seiberg-Witten curves: Orthogonal and symplectic groups Nucl. Phys. B 504 175-undefined
[7]  
Plesser MR(1996)Supersymmetric Yang-Mills theory and integrable systems Nucl. Phys. B 460 299-undefined
[8]  
Seiberg N(1996)Integrable systems and supersymmetric gauge theory Nucl. Phys. B 459 97-undefined
[9]  
Witten E(1997)N=2 moduli spaces and N = 1 dualities for SO(n(c)) and USp(2n(c)) superQCD Nucl. Phys. B 483 172-undefined
[10]  
Landsteiner K(2010)Argyres-Seiberg duality and the Higgs branch Commun. Math. Phys. 294 389-undefined