Frame Spectral Pairs and Exponential Bases

被引:0
作者
Christina Frederick
Azita Mayeli
机构
[1] New Jersey Institute of Technology,Department of Mathematical Sciences
[2] City University of New York,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2021年 / 27卷
关键词
Frames; Riesz bases; Exponential bases and sampling;
D O I
暂无
中图分类号
学科分类号
摘要
Given a domain Ω⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \subset {\mathbb {R}}^d$$\end{document} with positive and finite Lebesgue measure and a discrete set Λ⊂Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda \subset {\mathbb {R}}^d$$\end{document}, we say that (Ω,Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varOmega , \varLambda )$$\end{document} is a frame spectral pair if the set of exponential functions E(Λ):={e2πiλ·x:λ∈Λ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}(\varLambda ):=\{e^{2\pi i \lambda \cdot x}: \lambda \in \varLambda \}$$\end{document} is a frame for L2(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\varOmega )$$\end{document}. Special cases of frames include Riesz bases and orthogonal bases. In the finite setting ZNd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_N^d$$\end{document}, d,N≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d, N\ge 1$$\end{document}, a frame spectral pair can be similarly defined. In this paper we show how to construct and obtain new classes of frame spectral pairs in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} by “adding” a frame spectral pair in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{d}$$\end{document} to a frame spectral pair in ZNd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_N^d$$\end{document}. Our construction unifies the well-known examples of exponential frames for the union of cubes with equal volumes. We also remark on the link between the spectral property of a domain and sampling theory.
引用
收藏
相关论文
共 46 条
  • [1] Agora E(2015)Multi-tiling sets, Riesz bases, and sampling near the critical density in LCA groups Adv. Math. 285 454-477
  • [2] Antezana J(2018)Riesz bases of exponentials on unbounded multi-tiles Proc. Am. Math. Soc. 146 1991-2004
  • [3] Cabrelli C(2000)The art of frame theory Taiwan. J. Math. 4 129-201
  • [4] Cabrelli C(1952)A class of nonharmonic Fourier series Trans. Am. Math. Soc. 72 341-366
  • [5] Carbajal D(2021)Finding duality and Riesz bases of exponentials on multi-tiles Appl. Comput. Harmon. Anal. 51 104-117
  • [6] Casazza PG(1974)Commuting self-adjoint partial differential operators and a group theoretic problem J. Funct. Anal. 16 101-121
  • [7] Duffin RJ(2001)Orthogonal exponentials on the ball Expo. Math. 19 267-272
  • [8] Schaeffer AC(2020)Spectrality of product domains and Fuglede’s conjecture for convex polytopes J. Anal. Math. 140 409-441
  • [9] Frederick C(2014)Multi-tiling and Riesz bases Adv. Math. 252 1-6
  • [10] Okoudjou K(2013)Size of orthogonal sets of exponentials for the disk Rev. Mat. Iberoam. 29 739-747