Because iridium is both expensive and scarce, it is essential to reduce the amount of IrO2 in the anode catalysts of polymer electrolyte membrane water electrolysers (PEMWEs). The potential of β-SiC to act as a catalyst support for PEMWE anodes was evaluated. To do so, a modified version of the Adams fusion method was used to prepare catalysts with IrO2 supported on β-SiC with a mass percentage of IrO2 of 20, 40, 50, 60, 70, 80, 90, and 100 %. The thin-film method was used for the electrochemical characterization of catalysts by cyclic and linear sweep voltammetry. The catalysts were further characterized by scanning electron microscopy/energy dispersive X-ray (SEM-EDX) analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and N2 adsorption (BET). Gas diffusion electrodes with the synthesized catalysts were prepared for tests in a laboratory PEMWE. A 10 % improvement over pure IrO2 was found in a supported catalyst with 80 wt.% IrO2. However, such a small improvement is not statistically significant. Therefore, the support may not influence the electrocatalytic activity of IrO2.