Uniqueness theorems for the impulsive Dirac operator with discontinuity

被引:0
作者
Ran Zhang
Chuan-Fu Yang
机构
[1] Nanjing University of Posts and Telecommunications,Department of Applied Mathematics, School of Science
[2] Nanjing University of Science and Technology,Department of Applied Mathematics, School of Science
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Impulsive Dirac operator; Discontinuous condition; Inverse problem; Spectrum; Uniqueness; 34A55; 34B24; 47E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the impulsive Dirac operator with discontinuity and prove uniqueness theorems from introduced new supplementary data. It is shown that the potential on the whole interval can be uniquely determined by these given data.
引用
收藏
相关论文
共 30 条
  • [1] Albeverio S(2005)Inverse spectral problems for Dirac operators with summable potential Russ. J. Math. Phys. 12 406-423
  • [2] Hryniv R(2005)On a system of Dirac differential equations with discontinuity conditions inside an interval Ukr. Math. J. 57 712-727
  • [3] Mykytyuk YA(1966)Solution of the inverse problem by two spectra for the Dirac equation on a finite interval Doklady Akademii Nauk Azerb. Ssr 22 3-6
  • [4] Amirov RKh(1984)Discontinuous inverse eigenvalue problems Commun. Pure Appl. Math. 37 539-577
  • [5] Gasymov MG(1990)The eigenvalues function and the uniqueness theorem in the inverse probem for Dirac operator with discrete spectra Izv. Akad, Nauk Armjansk 25 495-501
  • [6] Dzabiev TT(2019)The uniqueness theorems in the inverse problems for Dirac operators Lobachevskii J. Math. 40 1489-1497
  • [7] Hald OH(2008)Transformation operators for the canonical Dirac system Differ. Uravn. 44 1011-1021
  • [8] Harutyunyan TN(2017)On the completeness of eigenfunctions of a discontinuous Dirac operator with an eigenparameter in the boundary Filomat 31 2537-2544
  • [9] Harutyunyan TN(2015)Completeness theorem for discontinuous Dirac systems J. Differ. Equ. Dyn. Syst. 23 15-23
  • [10] Harutyunyan TN(1982)Inverse problems for nonabsorbing media with discontinuous material properties J. Math. Phys. 23 396-404