共 35 条
- [31] On 1w+1x+1y+1z=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{ 2} $\end{document} and some of its generalizations Journal of Inequalities and Applications, 2018 (1)
- [32] A note on the Diophantine equation (x+a1)r1+(x+a2)r2+⋯+(x+am)rm=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x + a_1)^{r_1} + (x + a_2)^{r_2} + \cdots + (x + a_m)^{r_m} = y^n$$\end{document} Afrika Matematika, 2019, 30 : 957 - 958
- [33] The estimate for mean values on prime numbers relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {p} = \frac{1} {{n_1 }} + \frac{1} {{n_2 }} + \frac{1} {{n_3 }} $\end{document} Science China Mathematics, 2012, 55 (3) : 465 - 474
- [34] On the exponential Diophantine equation (3pm2-1)x+(p(p-3)m2+1)y=(pm)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z$$\end{document} Periodica Mathematica Hungarica, 2017, 74 (2) : 227 - 234
- [35] On the primitive divisors of the recurrent sequence un+1=(4cos2(2π/7)−1)un−un−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{n+1}=(4\rm{cos}^2(2\pi/7)-1)\it{u}_{n}-u_{n-\rm{1}}$$\end{document} with applications to group theory Science China Mathematics, 2018, 61 (11) : 2101 - 2110