共 35 条
- [21] On solutions of the diophantine equation Fn-Fm=3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{F_{n}-F_{m}=3^{a}}$$\end{document} Proceedings - Mathematical Sciences, 2019, 129 (5)
- [22] The equation x4+2ny4=z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^4+2^ny^4=z^4$$\end{document} in algebraic number fields Acta Mathematica Hungarica, 2022, 167 (1) : 309 - 331
- [23] The diophantine equation (y+q1)(y+q2)⋯(y+qm)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(y + q_{1})(y + q_{2})\cdots(y + q_{m}) = f(x)}$$\end{document} Acta Mathematica Hungarica, 2015, 146 (1) : 40 - 46
- [24] On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_{a,a} \cup \beta {\rm K}_{b,b} } $$ \end{document} Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 61 - 74
- [25] On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_a \cup \beta K_b } $$ \end{document} Journal of Applied Mathematics and Computing, 2004, 14 (1-2) : 39 - 49
- [26] On the Diophantine equation ∏i≤m(diy+qi)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \prod \nolimits _{i \le m}(d_iy + q_{i}) = f(x)$$\end{document} Afrika Matematika, 2018, 29 (7-8) : 1091 - 1095
- [27] On the Diophantine equation ∑j=1kjPjp=Pnq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{j=1}^{k}jP_j^p=P_n^q$$\end{document} Acta Mathematica Hungarica, 2020, 162 (2) : 647 - 676
- [28] On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al. The Ramanujan Journal, 2025, 66 (2)
- [29] The divisibility of the class number of the imaginary quadratic fields Q(1-2mk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{1-2m^k})$$\end{document} The Ramanujan Journal, 2024, 64 (3) : 991 - 1002
- [30] On the Diophantine Equation dx2+p2aq2b=4yp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx^2+p^{2a}q^{2b}=4y^p$$\end{document} Results in Mathematics, 2022, 77 (1)