共 35 条
- [11] On the variant Qn!=Px\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\left(n!\right)=P\left(x\right)$$\end{document} of the Brocard–Ramanujan Diophantine equation The Ramanujan Journal, 2024, 65 (4) : 1791 - 1798
- [12] The equation y2=x6+x2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^2=x^6+x^2+1$$\end{document} revisited Indian Journal of Pure and Applied Mathematics, 2023, 54 (3) : 760 - 765
- [13] On the integer solutions of the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} Periodica Mathematica Hungarica, 2022, 85 (2) : 369 - 379
- [14] On the diophantine equation y2=∏i≤8(x+ki)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y^{2} = \prod _{i \le 8}(x + k_i)}$$\end{document} Proceedings - Mathematical Sciences, 2018, 128 (4)
- [15] A note on the exponential diophantine equation (an-1)(bn-1)=x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{(a^{n}-1)(b^{n}-1)=x^{2}}$$\end{document} Proceedings - Mathematical Sciences, 2019, 129 (5)
- [16] Generalized Fibonacci numbers of the form wx2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$wx^{2}+1$$\end{document} Periodica Mathematica Hungarica, 2016, 73 (2) : 165 - 178
- [17] On the Diophantine equation Ln-Lm=2·3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}-L_{m}=2\cdot 3^{a}$$\end{document} Periodica Mathematica Hungarica, 2019, 79 (2) : 210 - 217
- [18] On the Diophantine equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\dfrac{ax^{n+2l}+c}{abt^{2}x^{n}+c}{\displaystyle\frac{ax^{n+2l}+c}{abt^{2}x^{n}+c}}=by^{2}$ \end{document} Acta Mathematica Hungarica, 2011, 133 (4) : 342 - 358
- [19] On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials Periodica Mathematica Hungarica, 2019, 79 (1) : 25 - 31
- [20] On the Diophantine Equation cx2+p2m=4yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cx^2+p^{2m}=4y^n$$\end{document} Results in Mathematics, 2021, 76 (2)