Existence and Multiplicity of Positive Solutions to a Quasilinear Elliptic Equation with Strong Allee Effect Growth Rate

被引:0
|
作者
Chan-Gyun Kim
Junping Shi
机构
[1] College of William and Mary,Department of Mathematics
来源
Results in Mathematics | 2013年 / 64卷
关键词
35J92; 35J20; 35J25; -Laplacain; Allee effect; positive solutions; multiplicity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a p-Laplacian equation with strong Allee effect growth rate and Dirichlet boundary condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll} {\rm div} (|\nabla u|^{p-2} \nabla u) + \lambda f(x,u)=0, &\quad x \in \Omega, \\ u=0, &\quad x \in \partial \Omega, \qquad \qquad ^ {(P_\lambda)} \end{array}\right.$$\end{document}where Ω is a bounded smooth domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \ge 1, p > 1}$$\end{document}, and λ is a positive parameter. By using variational methods and a suitable truncation technique, we prove that problem (Pλ) has at least two positive solutions for large parameter and it has no positive solutions for small parameter. In addition, a nonexistence result is investigated.
引用
收藏
页码:165 / 173
页数:8
相关论文
共 50 条