In this paper we consider a p-Laplacian equation with strong Allee effect growth rate and Dirichlet boundary condition
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{\begin{array}{ll} {\rm div} (|\nabla u|^{p-2} \nabla u) + \lambda f(x,u)=0, &\quad x \in \Omega, \\ u=0, &\quad x \in \partial \Omega, \qquad \qquad ^ {(P_\lambda)} \end{array}\right.$$\end{document}where Ω is a bounded smooth domain in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^N}$$\end{document} for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${N \ge 1, p > 1}$$\end{document}, and λ is a positive parameter. By using variational methods and a suitable truncation technique, we prove that problem (Pλ) has at least two positive solutions for large parameter and it has no positive solutions for small parameter. In addition, a nonexistence result is investigated.