Theoretical Estimation of the Shearing Strength of Polymer/Carbon Nanotube Contact: A Fractal Model

被引:0
作者
L. B. Atlukhanova
G. V. Kozlov
I. V. Dolbin
机构
[1] Dagestan State Medical University,
[2] Kh.M. Berbekov Kabardino-Balkarian State University,undefined
来源
Mechanics of Composite Materials | 2021年 / 57卷
关键词
nanocomposite; carbon nanotubes; contact strength; surface; structure; scale effect; contact length;
D O I
暂无
中图分类号
学科分类号
摘要
A fractal model allowing one to theoretically estimate the shearing strength of the interfacial contact in a polymer-carbon nanotube system is proposed. It takes into account the structure of carbon nanotube surface and describes experimental data accurately enough. This makes the model promising for predicting the polymer/nanofiller contact strength. As a function of nanotube diameter and contact length, this strength showed a strong scale effect.
引用
收藏
页码:205 / 210
页数:5
相关论文
共 51 条
[1]  
Moniruzzaman M(2006)Polymer nanocomposites containing carbon nanotubes Macromolecules 39 5194-5205
[2]  
Winey KI(2017)Epoxy nanocomposites Vysokomolekular. Soed. Ser. A. 59 485-522
[3]  
Irzhak TF(2002)Detachment of nanotubes from a polymer matrix Appl. Phys. Lett. 81 3873-3875
[4]  
Irzhak VI(2006)Enhancement of modulus, strength and toughness in poly (methyl methacrylate)-based composites by the incorporation of poly (methylmethacrylate)-functionalized nanotubes Adv. Funct. Mater. 16 1608-1614
[5]  
Cooper CA(2014)Interfacial properties of flax fiber–epoxy resin systems: existence of a complex interphase Compos. Sci. Techn. 100 152-157
[6]  
Cohen SR(2014)A multi-scale study of the interface between natural fibers and a biopolymer Composites: Part A 65 161-168
[7]  
Barber AH(1984)Flory-type approximation for the fractal dimension of cluster-cluster aggregation Phys. Rev. A. 29 1609-1611
[8]  
Wagner HD(2019)A general strategy for optimizing composite properties by evaluating the interfacial surface area of dispersed carbon nanotubes by fractal dimension Carbon 154 457-465
[9]  
Blond D(1984)Fractal dimension as working tool for surface-roughness problems Appl. Surf. Sci. 18 146-164
[10]  
Barron V(1986)Monolayer adsorption of fractal surfaces: a simple two-dimensional simulation J. Chem. Phys. 85 616-625