Solvability of the boundary-value problem for the second-order elliptic differential-operator equation with spectral parameter in the equation and boundary conditions

被引:0
作者
B. A. Aliev
机构
[1] Azerbaijan National Academy of Sciences,Institute of Mathematics and Mechanics
来源
Ukrainian Mathematical Journal | 2010年 / 62卷
关键词
Banach Space; Spectral Parameter; Separable Hilbert Space; Order Linear Differential Equation; Nonlocal Elliptic Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the solvability of a boundary-value problem for the second-order elliptic differential-operator equation with spectral parameter both in the equation and in boundary conditions. We also analyze the asymptotic behavior of the eigenvalues corresponding to the uniform boundary-value problem.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 23 条
  • [1] Laptev GI(1968)Strongly elliptic equations in Hilbert spaces Lit. Mat. Sb. 8 87-99
  • [2] Sobolevskii PE(1968)Elliptic equations in Banach spaces Differents. Uravn. 4 1346-1348
  • [3] Gasymov MG(1977)On the solvability of boundary-value problems for one class of operator-differential equations Dokl. Akad. Nauk SSSR 235 505-508
  • [4] Gorbachuk VI(1976)Some problems of the spectral theory of elliptic differential equations in spaces of vector functions Ukr. Mat. Zh. 28 313-324
  • [5] Gorbachuk ML(1970)On the character of the spectrum of self-adjoint extension of the Laplace operator in a bounded domain Dokl. Akad. Nauk SSSR 191 167-169
  • [6] Il’in VA(1983)Dual semigroups and second order linear elliptic boundary value problems Isr. J. Math. 45 225-254
  • [7] Filippov VS(1993)Coerciveness estimates for a class of nonlocal elliptic problems Different. Equat. Dynam. Syst. 4 341-351
  • [8] Amann H(2002)Problems for elliptic equations with operator-boundary conditions Integr. Equat. Oper. Theory 43 215-236
  • [9] Aibeche A(2000)Semigroup estimates and noncoercive boundary value problems Semigroup Forum 60 93-121
  • [10] Yakubov S(1985)Boundary-value problem with operator in the boundary conditions for a second-order elliptic differential-operator equation Sib. Mat. Zh. 26 176-188