High-fidelity quantum driving

被引:0
|
作者
Bason M.G. [1 ]
Viteau M. [1 ]
Malossi N. [2 ,4 ]
Huillery P. [1 ,3 ]
Arimondo E. [1 ,2 ,4 ]
Ciampini D. [1 ,2 ,4 ]
Fazio R. [5 ]
Giovannetti V. [5 ]
Mannella R. [4 ]
Morsch O. [1 ]
机构
[1] INO-CNR, Largo Pontecorvo 3
[2] CNISM UdR, Dipartimento di Fisica 'E. Fermi', Universitá di Pisa, Largo Pontecorvo 3
[3] Laboratoire Aimé Cotton, Univ. Paris-Sud 11, Campus d'Orsay Bat. 505
[4] Dipartimento di Fisica 'E. Fermi', Universitá di Pisa, Largo Pontecorvo 3
[5] NEST, Scuola Normale Superiore, Istituto di Nanoscienze-CNR
关键词
D O I
10.1038/nphys2170
中图分类号
学科分类号
摘要
Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose-Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter variations, making them useful for practical applications. © 2012 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:147 / 152
页数:5
相关论文
共 50 条
  • [31] A quantum router architecture for high-fidelity entanglement flows in quantum networks
    Yuan Lee
    Eric Bersin
    Axel Dahlberg
    Stephanie Wehner
    Dirk Englund
    npj Quantum Information, 8
  • [32] High-fidelity quantum gates in Si/SiGe double quantum dots
    Russ, Maximilian
    Zajac, D. M.
    Sigillito, A. J.
    Borjans, F.
    Taylor, J. M.
    Petta, J. R.
    Burkard, Guido
    PHYSICAL REVIEW B, 2018, 97 (08)
  • [33] High-fidelity quantum gates for OAM single qudits on quantum memory
    Vashukevich, E. A.
    Bashmakova, E. N.
    Golubeva, T. Yu
    Golubev, Yu M.
    LASER PHYSICS LETTERS, 2022, 19 (02)
  • [34] A quantum router architecture for high-fidelity entanglement flows in quantum networks
    Lee, Yuan
    Bersin, Eric
    Dahlberg, Axel
    Wehner, Stephanie
    Englund, Dirk
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [35] Transportation safety research applications utilizing high-fidelity driving simulation
    Watson, GS
    Papelis, YE
    Chen, LD
    URBAN TRANSPORT IX: URBAN TRANSPORT AND THE ENVIRONMENT IN THE 21ST CENTURY, 2003, 14 : 193 - 202
  • [36] The relationship between simulator sickness and driving performance in a high-fidelity simulator
    Igoshina, Elizaveta
    Russo, Frank A.
    Shewaga, Robert
    Haycock, Bruce
    Keshavarz, Behrang
    Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89 : 478 - 487
  • [37] The relationship between simulator sickness and driving performance in a high-fidelity simulator
    Igoshina, Elizaveta
    Russo, Frank A.
    Shewaga, Robert
    Haycock, Bruce
    Keshavarz, Behrang
    TRANSPORTATION RESEARCH PART F-TRAFFIC PSYCHOLOGY AND BEHAVIOUR, 2022, 89 : 478 - 487
  • [38] HIGH-FIDELITY HEADPHONES
    Anderson, L. J.
    JOURNAL OF THE SOCIETY OF MOTION PICTURE ENGINEERS, 1941, 37 (03): : 319 - 323
  • [39] High-fidelity nucleases
    Rusk, Nicole
    NATURE METHODS, 2019, 16 (10) : 958 - 958
  • [40] High-Fidelity Educators
    Kardong-Edgren, Suzan Suzie
    CLINICAL SIMULATION IN NURSING, 2016, 12 (12) : 529 - 529