High-fidelity quantum driving

被引:0
|
作者
Bason M.G. [1 ]
Viteau M. [1 ]
Malossi N. [2 ,4 ]
Huillery P. [1 ,3 ]
Arimondo E. [1 ,2 ,4 ]
Ciampini D. [1 ,2 ,4 ]
Fazio R. [5 ]
Giovannetti V. [5 ]
Mannella R. [4 ]
Morsch O. [1 ]
机构
[1] INO-CNR, Largo Pontecorvo 3
[2] CNISM UdR, Dipartimento di Fisica 'E. Fermi', Universitá di Pisa, Largo Pontecorvo 3
[3] Laboratoire Aimé Cotton, Univ. Paris-Sud 11, Campus d'Orsay Bat. 505
[4] Dipartimento di Fisica 'E. Fermi', Universitá di Pisa, Largo Pontecorvo 3
[5] NEST, Scuola Normale Superiore, Istituto di Nanoscienze-CNR
关键词
D O I
10.1038/nphys2170
中图分类号
学科分类号
摘要
Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose-Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter variations, making them useful for practical applications. © 2012 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:147 / 152
页数:5
相关论文
共 50 条
  • [21] High-fidelity composite quantum gates for Raman qubits
    Torosov, Boyan T.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [22] Erasure conversion in a high-fidelity Rydberg quantum simulator
    Scholl, Pascal
    Shaw, Adam L.
    Tsai, Richard Bing-Shiun
    Finkelstein, Ran
    Choi, Joonhee
    Endres, Manuel
    NATURE, 2023, 622 (7982) : 273 - +
  • [23] A high-fidelity noiseless amplifier for quantum light states
    Zavatta A.
    Fiurášek J.
    Bellini M.
    Nature Photonics, 2011, 5 (1) : 52 - 56
  • [24] High-fidelity fast quantum transport with imperfect controls
    Murphy, M.
    Jiang, L.
    Khaneja, N.
    Calarco, T.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [25] A high-fidelity memory scheme for quantum data buses
    Liu, Bo-Yang
    Cui, Wei
    Dai, Hong-Yi
    Chen, Xi
    Zhang, Ming
    CHINESE PHYSICS B, 2017, 26 (09)
  • [26] Establishing High-Fidelity Entanglement in Quantum Repeater Chains
    Liu, Zhenyu
    Marano, Stefano
    Win, Moe Z.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2024, 42 (07) : 1763 - 1778
  • [27] Routing Strategies for High-Fidelity, Multiplexed Quantum Networks
    Lee, Yuan
    Bersin, Eric
    Dai, Wenhan
    Englund, Dirk
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [28] Erasure conversion in a high-fidelity Rydberg quantum simulator
    Pascal Scholl
    Adam L. Shaw
    Richard Bing-Shiun Tsai
    Ran Finkelstein
    Joonhee Choi
    Manuel Endres
    Nature, 2023, 622 : 273 - 278
  • [29] High-fidelity gates in quantum dot spin qubits
    Koh, Teck Seng
    Coppersmith, S. N.
    Friesen, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : 19695 - 19700
  • [30] High-fidelity dimer excitations using quantum hardware
    Eassa, Norhan M.
    Gibbs, Joe
    Holmes, Zoe
    Sornborger, Andrew
    Cincio, Lukasz
    Hester, Gavin
    Kairys, Paul
    Motta, Mario
    Cohn, Jeffrey
    Banerjee, Arnab
    PHYSICAL REVIEW B, 2024, 110 (18)