High-fidelity quantum driving

被引:0
作者
Bason M.G. [1 ]
Viteau M. [1 ]
Malossi N. [2 ,4 ]
Huillery P. [1 ,3 ]
Arimondo E. [1 ,2 ,4 ]
Ciampini D. [1 ,2 ,4 ]
Fazio R. [5 ]
Giovannetti V. [5 ]
Mannella R. [4 ]
Morsch O. [1 ]
机构
[1] INO-CNR, 56127 Pisa
[2] CNISM UdR, Dipartimento di Fisica 'E. Fermi', Universitá di Pisa, 56127 Pisa
[3] Laboratoire Aimé Cotton, 91405 Orsay, Univ. Paris-Sud 11
[4] Dipartimento di Fisica 'E. Fermi', Universitá di Pisa, 56127 Pisa
[5] NEST, Scuola Normale Superiore, Istituto di Nanoscienze-CNR
关键词
D O I
10.1038/nphys2170
中图分类号
学科分类号
摘要
Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose-Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter variations, making them useful for practical applications. © 2012 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:147 / 152
页数:5
相关论文
共 30 条
[1]  
Walmsley I., Rabitz H., Quantum physics under control, Phys. Today, 56, pp. 43-49, (2003)
[2]  
Rice S.A., Zhao M., Optical Control of Molecular Dynamics, (2000)
[3]  
Hansch T.W., Nobel lecture: Passion for precision, Reviews of Modern Physics, 78, 4, pp. 1297-1309, (2006)
[4]  
Nielsen M., Chuang I., Quantum Computation and Quantum Communication, (2000)
[5]  
Wieman C.E., Pritchard D.E., Wineland D.J., Atom cooling, trapping, and quantum manipulation, Rev. Mod. Phys., 71, (1999)
[6]  
Poot M., Van Der Zant H.S.J., Mechanical Systems in the Quantum Regime, (2011)
[7]  
Farhi E., Et al., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, pp. 472-475, (2001)
[8]  
Berry M.V., Two-state quantum asymptotics, Ann. NY Acad. Sci., 755, pp. 303-317, (1995)
[9]  
Landau L., On the theory of transfer of energy at collisions II, Phys. Z. Sow., 2, (1932)
[10]  
Zener C., Non-adiabatic crossing of energy levels, Proc. R. Soc. A, 137, pp. 696-702, (1932)